コード例 #1
0
def evaluate(args):
    config = Config().from_file(args["config"])

    from data.interface import prepare_data_loader
    (train_loader, dev_loader, test_loader,
     test_4d_loader) = prepare_data_loader(args,
                                           args["data_path"],
                                           training=False)
    from models.interface_ont import build_model_fn
    model_fn = build_model_fn(args, config)
    scf = scaffold.Scaffold().build(
        args, config,
        os.path.join(ENV_PATH, "nolol_{}_trained".format(args["dataset"])),
        args["run_id"])

    # for dev set
    if args["run_dev_testing"]:
        print("Development Set ...")
        eval_spec = model_fn(ModeKeys.EVAL, dev_loader)
        scf.evaluate(eval_spec)

    if args['except_domain'] != "" and args["run_except_4d"]:
        print("Test Set on 4 domains...")
        eval_spec = model_fn(ModeKeys.EVAL, test_4d_loader)
        scf.evaluate(eval_spec)

    # for test set
    print("Test Set ...")
    eval_spec = model_fn(ModeKeys.TEST, test_loader)
    scf.evaluate(eval_spec)
コード例 #2
0
def train(args):
    config = Config().from_file(args["config"])

    from data.interface import prepare_data_loader
    (train_loader, dev_loader, test_loader,
     test_4d_loader) = prepare_data_loader(args,
                                           args["data_path"],
                                           training=True)
    from models.interface_ont import build_model_fn
    model_fn = build_model_fn(args, config)
    train_spec = model_fn(ModeKeys.TRAIN, train_loader)
    eval_spec = model_fn(ModeKeys.EVAL, dev_loader)
    scf = scaffold.Scaffold().build(
        args, config,
        os.path.join(ENV_PATH, "nolol_{}_trained".format(args["dataset"])),
        args["run_id"])
    scf.train(train_spec, eval_spec)