コード例 #1
0
def test():
    print("Loading test data...")
    start_time = time.time()
    x_test, y_test = process_file(test_dir, word_to_id, cat_to_id,
                                  config.seq_length)

    session = tf.Session()
    session.run(tf.global_variables_initializer())
    saver = tf.train.Saver()
    saver.restore(sess=session, save_path=save_path)  # 读取保存的模型

    print('Testing...')
    loss_test, acc_test = evaluate(session, x_test, y_test)
    msg = 'Test Loss: {0:>6.2}, Test Acc: {1:>7.2%}'
    print(msg.format(loss_test, acc_test))

    batch_size = 128
    data_len = len(x_test)
    num_batch = int((data_len - 1) / batch_size) + 1

    y_test_cls = np.argmax(y_test, 1)
    y_pred_cls = np.zeros(shape=len(x_test), dtype=np.int32)  # 保存预测结果
    for i in range(num_batch):  # 逐批次处理
        start_id = i * batch_size
        end_id = min((i + 1) * batch_size, data_len)
        feed_dict = {
            model.input_x: x_test[start_id:end_id],
            model.keep_prob: 1.0
        }
        y_pred_cls[start_id:end_id] = session.run(model.y_pred_cls,
                                                  feed_dict=feed_dict)

    # 评估
    print("Precision, Recall and F1-Score...")
    print(
        metrics.classification_report(y_test_cls,
                                      y_pred_cls,
                                      target_names=categories))

    # 混淆矩阵
    print("Confusion Matrix...")
    cm = metrics.confusion_matrix(y_test_cls, y_pred_cls)
    print(cm)

    time_dif = get_time_dif(start_time)
    print("Time usage:", time_dif)
コード例 #2
0
def train():
    print("Configuring TensorBoard and Saver...")
    # 配置 Tensorboard,重新训练时,请将tensorboard文件夹删除,不然图会覆盖
    tensorboard_dir = 'tensorboard/textrnn'
    if not os.path.exists(tensorboard_dir):
        os.makedirs(tensorboard_dir)

    tf.summary.scalar("loss", model.loss)
    tf.summary.scalar("accuracy", model.acc)
    merged_summary = tf.summary.merge_all()
    writer = tf.summary.FileWriter(tensorboard_dir)

    # 配置 Saver
    saver = tf.train.Saver()
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    print("Loading training and validation data...")
    # 载入训练集与验证集
    start_time = time.time()
    x_train, y_train = process_file(train_dir, word_to_id, cat_to_id,
                                    config.seq_length)
    x_val, y_val = process_file(val_dir, word_to_id, cat_to_id,
                                config.seq_length)
    time_dif = get_time_dif(start_time)
    print("Time usage:", time_dif)

    # 创建session
    session = tf.Session()
    session.run(tf.global_variables_initializer())
    writer.add_graph(session.graph)

    print('Training and evaluating...')
    start_time = time.time()
    total_batch = 0  # 总批次
    best_acc_val = 0.0  # 最佳验证集准确率
    last_improved = 0  # 记录上一次提升批次
    require_improvement = 1000  # 如果超过1000轮未提升,提前结束训练

    flag = False
    for epoch in range(config.num_epochs):
        print('Epoch:', epoch + 1)
        batch_train = batch_iter(x_train, y_train, config.batch_size)
        for x_batch, y_batch in batch_train:
            feed_dict = feed_data(x_batch, y_batch, config.dropout_keep_prob)

            if total_batch % config.save_per_batch == 0:
                # 每多少轮次将训练结果写入tensorboard scalar
                s = session.run(merged_summary, feed_dict=feed_dict)
                writer.add_summary(s, total_batch)

            if total_batch % config.print_per_batch == 0:
                # 每多少轮次输出在训练集和验证集上的性能
                feed_dict[model.keep_prob] = 1.0
                loss_train, acc_train = session.run([model.loss, model.acc],
                                                    feed_dict=feed_dict)
                loss_val, acc_val = evaluate(session, x_val, y_val)  # todo

                if acc_val > best_acc_val:
                    # 保存最好结果
                    best_acc_val = acc_val
                    last_improved = total_batch
                    saver.save(sess=session, save_path=save_path)
                    improved_str = '*'
                else:
                    improved_str = ''

                time_dif = get_time_dif(start_time)
                msg = 'Iter: {0:>6}, Train Loss: {1:>6.2}, Train Acc: {2:>7.2%},' \
                      + ' Val Loss: {3:>6.2}, Val Acc: {4:>7.2%}, Time: {5} {6}'
                print(
                    msg.format(total_batch, loss_train, acc_train, loss_val,
                               acc_val, time_dif, improved_str))

            session.run(model.optim, feed_dict=feed_dict)  # 运行优化
            total_batch += 1

            if total_batch - last_improved > require_improvement:
                # 验证集正确率长期不提升,提前结束训练
                print("No optimization for a long time, auto-stopping...")
                flag = True
                break  # 跳出循环
        if flag:  # 同上
            break
コード例 #3
0
seq_length = 100  # data input length

# Network Parameters
embedding_dim = 20  # 词向量维度
dropout = 0.5  # Dropout, probability to drop a unit
num_filters = 25  # 卷积核数目
kernel_size = 5  # 卷积核尺寸
hidden_dim = 128  # 全连接层神经元

# data process
labels = build_vocab(train_dir, test_dir, val_dir, vocab_dir)
num_classes = len(labels)
categories, cat_to_id = read_category(labels)
words, word_to_id = read_vocab(vocab_dir)
vocab_size = len(words)
x_train, y_train_ = process_file(train_dir, word_to_id, cat_to_id, seq_length)
y_train = y_train_.argmax(axis=1)
x_test, y_test_ = process_file(test_dir, word_to_id, cat_to_id, seq_length)
y_test = y_test_.argmax(axis=1)
with open(map_path, "wb") as f:
    pickle.dump([word_to_id, cat_to_id, seq_length, num_classes], f)


# Create the neural network
def conv_net(x_dict, n_classes, dropout, reuse, is_training):
    # Define a scope for reusing the variables
    with tf.variable_scope('ConvNet', reuse=reuse):
        embedding = tf.get_variable('embedding', [vocab_size, embedding_dim])
        # TF Estimator input is a dict, in case of multiple inputs
        input_x = x_dict['input']
        embedding_inputs = tf.nn.embedding_lookup(embedding, input_x)