コード例 #1
0
ファイル: hotspot.py プロジェクト: gaberosser/crime-fighter
 def prediction_array(self, time, space_array):
     # combine time with space dimension
     space_array = self.space_class(space_array, copy=False)
     t = DataArray(time * np.ones(space_array.ndata))
     if space_array.original_shape is not None:
         t.original_shape = space_array.original_shape
     return t.adddim(space_array, type=self.data_class)
コード例 #2
0
ファイル: hotspot.py プロジェクト: gaberosser/crime-fighter
 def predict(self, time, space_array, force_update=False):
     """
     Generate a prediction from the trained model.
     Supply single time and spatial sample points in separate arrays
     If force_update=False then the spatial component is assumed unchanged, so only the time is altered.
     This is important: updating the spatial sample points loses all cached net paths.
     """
     if self.kde.targets_set and not force_update:
         self.kde.update_target_times(time)
         return self.kde.pdf()
     else:
         space_array = self.space_class(space_array, copy=False)
         time_array = DataArray(np.ones(space_array.ndata) * time)
         targets_array = time_array.adddim(space_array,
                                           type=self.data_class)
         return self.kde.pdf(targets=targets_array)
コード例 #3
0
ファイル: netmodels.py プロジェクト: gaberosser/crime-fighter
                             targets,
                             max_distance=radius,
                             max_split=1e4)
    k = NetworkKernelEqualSplitLinear(sources.getone(0), 200.)
    k.set_walker(nw)
    z = k.pdf()
    zn = z / max(z)
    # plt.figure()
    # itn_net.plot_network()
    # plt.scatter(nodes[:, 0], nodes[:, 1], marker='x', s=15, c='k')
    # plt.scatter(*targets.to_cartesian().separate, s=(zn * 20) ** 2)
    # plt.scatter(*sources.getone(0).cartesian_coords, c='r', s=50)

    # add time to sources and targets
    times = DataArray(np.random.rand(num_pts))
    sources_st = times.adddim(sources, type=NetworkSpaceTimeData)
    targets_st = DataArray(np.ones(targets.ndata)).adddim(
        targets, type=NetworkSpaceTimeData)

    kst = NetworkTemporalKernelEqualSplit(
        [sources_st.time.getone(0),
         sources_st.space.getone(0)], [0.5, 200.])
    kst.set_walker(nw)
    zst = kst.pdf(target_times=targets_st.time)
    zstn = zst / z.max()

    # plt.figure()
    # itn_net.plot_network()
    # plt.scatter(nodes[:, 0], nodes[:, 1], marker='x', s=15, c='k')
    # plt.scatter(*targets.to_cartesian().separate, s=(zstn * 20) ** 2)
    # plt.scatter(*sources.getone(0).cartesian_coords, c=sources_st.time.getone(0), s=50, vmax=1., vmin=0.)