コード例 #1
0
    def test_dam_train(self):
        with torch.cuda.device(0):
            quick_data_dir = os.path.join(self.config_data.data_path["DB"],
                                          "quickdata")
            data_dir = os.path.join(quick_data_dir,
                                    "allnonref_85-05_nan-0.1_00-1.0")
            data_model_8595 = GagesModel.load_datamodel(
                data_dir,
                data_source_file_name='data_source.txt',
                stat_file_name='Statistics.json',
                flow_file_name='flow.npy',
                forcing_file_name='forcing.npy',
                attr_file_name='attr.npy',
                f_dict_file_name='dictFactorize.json',
                var_dict_file_name='dictAttribute.json',
                t_s_dict_file_name='dictTimeSpace.json')

            gages_model_train = GagesModel.update_data_model(
                self.config_data, data_model_8595)
            nid_dir = os.path.join(
                "/".join(self.config_data.data_path["DB"].split("/")[:-1]),
                "nid", "quickdata")
            nid_input = NidModel.load_nidmodel(
                nid_dir,
                nid_file=self.nid_file,
                nid_source_file_name='nid_source.txt',
                nid_data_file_name='nid_data.shp')
            gage_main_dam_purpose = unserialize_json(
                os.path.join(nid_dir, "dam_main_purpose_dict.json"))
            data_input = GagesDamDataModel(gages_model_train, nid_input, True,
                                           gage_main_dam_purpose)
            gages_input = choose_which_purpose(data_input)
            master_train(gages_input)
コード例 #2
0
 def test_gages_dam_attr(self):
     quick_data_dir = os.path.join(self.config_data.data_path["DB"],
                                   "quickdata")
     data_dir = os.path.join(quick_data_dir,
                             "conus-all_90-10_nan-0.0_00-1.0")
     df = GagesModel.load_datamodel(data_dir,
                                    data_source_file_name='data_source.txt',
                                    stat_file_name='Statistics.json',
                                    flow_file_name='flow.npy',
                                    forcing_file_name='forcing.npy',
                                    attr_file_name='attr.npy',
                                    f_dict_file_name='dictFactorize.json',
                                    var_dict_file_name='dictAttribute.json',
                                    t_s_dict_file_name='dictTimeSpace.json')
     # nid_input = NidModel()
     nid_input = NidModel(self.config_data.config_file)
     # nid_dir = os.path.join("/".join(self.config_data.data_path["DB"].split("/")[:-1]), "nid", "quickdata")
     nid_dir = os.path.join(
         "/".join(self.config_data.data_path["DB"].split("/")[:-1]), "nid",
         "test")
     save_nidinput(nid_input,
                   nid_dir,
                   nid_source_file_name='nid_source.txt',
                   nid_data_file_name='nid_data.shp')
     data_input = GagesDamDataModel(df, nid_input)
     serialize_json(data_input.gage_main_dam_purpose,
                    os.path.join(nid_dir, "dam_main_purpose_dict.json"))
コード例 #3
0
 def test_dam_train(self):
     """just test for one purpose as a case"""
     with torch.cuda.device(2):
         quick_data_dir = os.path.join(self.config_data.data_path["DB"],
                                       "quickdata")
         data_dir = os.path.join(quick_data_dir,
                                 "conus-all_90-10_nan-0.0_00-1.0")
         df = GagesModel.load_datamodel(
             data_dir,
             data_source_file_name='data_source.txt',
             stat_file_name='Statistics.json',
             flow_file_name='flow.npy',
             forcing_file_name='forcing.npy',
             attr_file_name='attr.npy',
             f_dict_file_name='dictFactorize.json',
             var_dict_file_name='dictAttribute.json',
             t_s_dict_file_name='dictTimeSpace.json')
         nid_dir = os.path.join(
             "/".join(self.config_data.data_path["DB"].split("/")[:-1]),
             "nid", "quickdata")
         nid_input = NidModel.load_nidmodel(
             nid_dir,
             nid_file=self.nid_file,
             nid_source_file_name='nid_source.txt',
             nid_data_file_name='nid_data.shp')
         gage_main_dam_purpose = unserialize_json(
             os.path.join(nid_dir, "dam_main_purpose_dict.json"))
         data_input = GagesDamDataModel(df, nid_input, True,
                                        gage_main_dam_purpose)
         purpose_chosen = 'C'
         gages_input = choose_which_purpose(data_input,
                                            purpose=purpose_chosen)
         master_train(gages_input)
コード例 #4
0
    def test_dam_test(self):
        quick_data_dir = os.path.join(self.config_data.data_path["DB"],
                                      "quickdata")
        data_dir = os.path.join(quick_data_dir,
                                "conus-all_90-10_nan-0.0_00-1.0")
        data_model_train = GagesModel.load_datamodel(
            data_dir,
            data_source_file_name='data_source.txt',
            stat_file_name='Statistics.json',
            flow_file_name='flow.npy',
            forcing_file_name='forcing.npy',
            attr_file_name='attr.npy',
            f_dict_file_name='dictFactorize.json',
            var_dict_file_name='dictAttribute.json',
            t_s_dict_file_name='dictTimeSpace.json')
        data_model_test = GagesModel.load_datamodel(
            data_dir,
            data_source_file_name='test_data_source.txt',
            stat_file_name='test_Statistics.json',
            flow_file_name='test_flow.npy',
            forcing_file_name='test_forcing.npy',
            attr_file_name='test_attr.npy',
            f_dict_file_name='test_dictFactorize.json',
            var_dict_file_name='test_dictAttribute.json',
            t_s_dict_file_name='test_dictTimeSpace.json')

        gages_model_train = GagesModel.update_data_model(
            self.config_data, data_model_train)
        gages_model_test = GagesModel.update_data_model(
            self.config_data,
            data_model_test,
            train_stat_dict=gages_model_train.stat_dict)
        nid_dir = os.path.join(
            "/".join(self.config_data.data_path["DB"].split("/")[:-1]), "nid",
            "quickdata")
        nid_input = NidModel.load_nidmodel(
            nid_dir,
            nid_file=self.nid_file,
            nid_source_file_name='nid_source.txt',
            nid_data_file_name='nid_data.shp')
        gage_main_dam_purpose = unserialize_json(
            os.path.join(nid_dir, "dam_main_purpose_dict.json"))
        data_input = GagesDamDataModel(gages_model_test, nid_input, True,
                                       gage_main_dam_purpose)
        gages_input = choose_which_purpose(data_input)
        pred, obs = master_test(gages_input)
        basin_area = gages_input.data_source.read_attr(
            gages_input.t_s_dict["sites_id"], ['DRAIN_SQKM'],
            is_return_dict=False)
        mean_prep = gages_input.data_source.read_attr(
            gages_input.t_s_dict["sites_id"], ['PPTAVG_BASIN'],
            is_return_dict=False)
        mean_prep = mean_prep / 365 * 10
        pred = _basin_norm(pred, basin_area, mean_prep, to_norm=False)
        obs = _basin_norm(obs, basin_area, mean_prep, to_norm=False)
        save_result(gages_input.data_source.data_config.data_path['Temp'],
                    self.test_epoch, pred, obs)
コード例 #5
0
    def test_dam_train(self):
        quick_data_dir = os.path.join(self.config_data_1.data_path["DB"],
                                      "quickdata")
        data_dir = os.path.join(quick_data_dir,
                                "allnonref_85-05_nan-0.1_00-1.0")
        # for inv model, datamodel of  train and test are same
        data_model_8595 = GagesModel.load_datamodel(
            data_dir,
            data_source_file_name='data_source.txt',
            stat_file_name='Statistics.json',
            flow_file_name='flow.npy',
            forcing_file_name='forcing.npy',
            attr_file_name='attr.npy',
            f_dict_file_name='dictFactorize.json',
            var_dict_file_name='dictAttribute.json',
            t_s_dict_file_name='dictTimeSpace.json')
        t_range1_train = self.config_data_1.model_dict["data"]["tRangeTrain"]
        gages_model1_train = GagesModel.update_data_model(
            self.config_data_1,
            data_model_8595,
            t_range_update=t_range1_train,
            data_attr_update=True)
        t_range2_train = self.config_data_2.model_dict["data"]["tRangeTrain"]
        gages_model2_train = GagesModel.update_data_model(
            self.config_data_2,
            data_model_8595,
            t_range_update=t_range2_train,
            data_attr_update=True)
        nid_dir = os.path.join(
            "/".join(self.config_data_1.data_path["DB"].split("/")[:-1]),
            "nid", "quickdata")
        nid_input = NidModel.load_nidmodel(
            nid_dir,
            nid_file=self.nid_file,
            nid_source_file_name='nid_source.txt',
            nid_data_file_name='nid_data.shp')
        gage_main_dam_purpose = unserialize_json(
            os.path.join(nid_dir, "dam_main_purpose_dict.json"))
        gage_main_dam_purpose_lst = list(gage_main_dam_purpose.values())
        gage_main_dam_purpose_unique = np.unique(gage_main_dam_purpose_lst)

        with torch.cuda.device(1):
            for i in range(0, gage_main_dam_purpose_unique.size):
                data_input1 = GagesDamDataModel(gages_model1_train, nid_input,
                                                True, gage_main_dam_purpose)
                gages_input1 = choose_which_purpose(
                    data_input1, purpose=gage_main_dam_purpose_unique[i])
                data_input2 = GagesDamDataModel(gages_model2_train, nid_input,
                                                True, gage_main_dam_purpose)
                gages_input2 = choose_which_purpose(
                    data_input2, purpose=gage_main_dam_purpose_unique[i])
                data_model = GagesInvDataModel(gages_input1, gages_input2)
                # pre_trained_model_epoch = 165
                train_lstm_inv(data_model)
コード例 #6
0
    def test_gages_dam_all_save(self):
        quick_data_dir = os.path.join(self.config_data.data_path["DB"],
                                      "quickdata")
        data_dir = os.path.join(quick_data_dir,
                                "conus-all_90-10_nan-0.0_00-1.0")
        data_model_train = GagesModel.load_datamodel(
            data_dir,
            data_source_file_name='data_source.txt',
            stat_file_name='Statistics.json',
            flow_file_name='flow.npy',
            forcing_file_name='forcing.npy',
            attr_file_name='attr.npy',
            f_dict_file_name='dictFactorize.json',
            var_dict_file_name='dictAttribute.json',
            t_s_dict_file_name='dictTimeSpace.json')

        gages_model_train = GagesModel.update_data_model(
            self.config_data, data_model_train)
        data_model_test = GagesModel.load_datamodel(
            data_dir,
            data_source_file_name='test_data_source.txt',
            stat_file_name='test_Statistics.json',
            flow_file_name='test_flow.npy',
            forcing_file_name='test_forcing.npy',
            attr_file_name='test_attr.npy',
            f_dict_file_name='test_dictFactorize.json',
            var_dict_file_name='test_dictAttribute.json',
            t_s_dict_file_name='test_dictTimeSpace.json')
        gages_model_test = GagesModel.update_data_model(
            self.config_data,
            data_model_test,
            train_stat_dict=gages_model_train.stat_dict)
        nid_dir = os.path.join(
            "/".join(self.config_data.data_path["DB"].split("/")[:-1]), "nid",
            "test")
        nid_input = NidModel.load_nidmodel(
            nid_dir,
            nid_source_file_name='nid_source.txt',
            nid_data_file_name='nid_data.shp')
        gage_main_dam_purpose = unserialize_json(
            os.path.join(nid_dir, "dam_main_purpose_dict.json"))
        data_input = GagesDamDataModel(gages_model_test, nid_input,
                                       gage_main_dam_purpose)
        data_model_dam = choose_which_purpose(data_input)
        save_datamodel(data_model_dam,
                       data_source_file_name='test_data_source.txt',
                       stat_file_name='test_Statistics.json',
                       flow_file_name='test_flow',
                       forcing_file_name='test_forcing',
                       attr_file_name='test_attr',
                       f_dict_file_name='test_dictFactorize.json',
                       var_dict_file_name='test_dictAttribute.json',
                       t_s_dict_file_name='test_dictTimeSpace.json')
コード例 #7
0
    def test_damcls_test_datamodel(self):
        quick_data_dir = os.path.join(self.config_data.data_path["DB"], "quickdata")
        data_dir = os.path.join(quick_data_dir, "allnonref_85-05_nan-0.1_00-1.0")
        data_model_train = GagesModel.load_datamodel(data_dir,
                                                     data_source_file_name='data_source.txt',
                                                     stat_file_name='Statistics.json', flow_file_name='flow.npy',
                                                     forcing_file_name='forcing.npy', attr_file_name='attr.npy',
                                                     f_dict_file_name='dictFactorize.json',
                                                     var_dict_file_name='dictAttribute.json',
                                                     t_s_dict_file_name='dictTimeSpace.json')
        data_model_test = GagesModel.load_datamodel(data_dir,
                                                    data_source_file_name='test_data_source.txt',
                                                    stat_file_name='test_Statistics.json',
                                                    flow_file_name='test_flow.npy',
                                                    forcing_file_name='test_forcing.npy',
                                                    attr_file_name='test_attr.npy',
                                                    f_dict_file_name='test_dictFactorize.json',
                                                    var_dict_file_name='test_dictAttribute.json',
                                                    t_s_dict_file_name='test_dictTimeSpace.json')

        gages_model_train = GagesModel.update_data_model(self.config_data, data_model_train)
        df = GagesModel.update_data_model(self.config_data, data_model_test,
                                          train_stat_dict=gages_model_train.stat_dict)
        nid_dir = os.path.join("/".join(self.config_data.data_path["DB"].split("/")[:-1]), "nid", "quickdata")
        nid_input = NidModel.load_nidmodel(nid_dir, nid_file=self.nid_file,
                                           nid_source_file_name='nid_source.txt', nid_data_file_name='nid_data.shp')
        gage_main_dam_purpose = unserialize_json(os.path.join(nid_dir, "dam_main_purpose_dict.json"))
        gage_main_dam_purpose_lst = list(gage_main_dam_purpose.values())
        gage_main_dam_purpose_unique = np.unique(gage_main_dam_purpose_lst)
        data_input = GagesDamDataModel(df, nid_input, True, gage_main_dam_purpose)
        for i in range(gage_main_dam_purpose_unique.size):
            gages_input = choose_which_purpose(data_input, purpose=gage_main_dam_purpose_unique[i])
            save_datamodel(gages_input, gage_main_dam_purpose_unique[i], data_source_file_name='test_data_source.txt',
                           stat_file_name='test_Statistics.json', flow_file_name='test_flow',
                           forcing_file_name='test_forcing', attr_file_name='test_attr',
                           f_dict_file_name='test_dictFactorize.json', var_dict_file_name='test_dictAttribute.json',
                           t_s_dict_file_name='test_dictTimeSpace.json')
コード例 #8
0
 def test_dam_test(self):
     quick_data_dir = os.path.join(self.config_data_1.data_path["DB"],
                                   "quickdata")
     data_dir = os.path.join(quick_data_dir,
                             "allnonref_85-05_nan-0.1_00-1.0")
     # for inv model, datamodel of  train and test are same
     data_model_8595 = GagesModel.load_datamodel(
         data_dir,
         data_source_file_name='data_source.txt',
         stat_file_name='Statistics.json',
         flow_file_name='flow.npy',
         forcing_file_name='forcing.npy',
         attr_file_name='attr.npy',
         f_dict_file_name='dictFactorize.json',
         var_dict_file_name='dictAttribute.json',
         t_s_dict_file_name='dictTimeSpace.json')
     # for 2nd model, datamodel of train and test belong to parts of the test time
     data_model_9505 = GagesModel.load_datamodel(
         data_dir,
         data_source_file_name='test_data_source.txt',
         stat_file_name='test_Statistics.json',
         flow_file_name='test_flow.npy',
         forcing_file_name='test_forcing.npy',
         attr_file_name='test_attr.npy',
         f_dict_file_name='test_dictFactorize.json',
         var_dict_file_name='test_dictAttribute.json',
         t_s_dict_file_name='test_dictTimeSpace.json')
     t_range1_test = self.config_data_1.model_dict["data"]["tRangeTest"]
     # Because we know data of period "90-95", so that we can get its statistics according to this period
     gages_model1_test = GagesModel.update_data_model(
         self.config_data_1,
         data_model_8595,
         t_range_update=t_range1_test,
         data_attr_update=True)
     t_range2_train = self.config_data_2.model_dict["data"]["tRangeTrain"]
     t_range2_test = self.config_data_2.model_dict["data"]["tRangeTest"]
     gages_model2_train = GagesModel.update_data_model(
         self.config_data_2,
         data_model_8595,
         t_range_update=t_range2_train,
         data_attr_update=True)
     gages_model2_test = GagesModel.update_data_model(
         self.config_data_2,
         data_model_9505,
         t_range_update=t_range2_test,
         data_attr_update=True,
         train_stat_dict=gages_model2_train.stat_dict)
     nid_dir = os.path.join(
         "/".join(self.config_data_2.data_path["DB"].split("/")[:-1]),
         "nid", "quickdata")
     nid_input = NidModel.load_nidmodel(
         nid_dir,
         nid_file=self.nid_file,
         nid_source_file_name='nid_source.txt',
         nid_data_file_name='nid_data.shp')
     gage_main_dam_purpose = unserialize_json(
         os.path.join(nid_dir, "dam_main_purpose_dict.json"))
     data_input1 = GagesDamDataModel(gages_model1_test, nid_input, True,
                                     gage_main_dam_purpose)
     df1 = choose_which_purpose(data_input1)
     data_input2 = GagesDamDataModel(gages_model2_test, nid_input, True,
                                     gage_main_dam_purpose)
     df2 = choose_which_purpose(data_input2)
     with torch.cuda.device(2):
         data_model = GagesInvDataModel(df1, df2)
         pred, obs = test_lstm_inv(data_model, epoch=self.test_epoch)
         basin_area = df2.data_source.read_attr(df2.t_s_dict["sites_id"],
                                                ['DRAIN_SQKM'],
                                                is_return_dict=False)
         mean_prep = df2.data_source.read_attr(df2.t_s_dict["sites_id"],
                                               ['PPTAVG_BASIN'],
                                               is_return_dict=False)
         mean_prep = mean_prep / 365 * 10
         pred = _basin_norm(pred, basin_area, mean_prep, to_norm=False)
         obs = _basin_norm(obs, basin_area, mean_prep, to_norm=False)
         save_result(df2.data_source.data_config.data_path['Temp'],
                     self.test_epoch, pred, obs)
コード例 #9
0
 def test_dam_train(self):
     quick_data_dir = os.path.join(self.config_data.data_path["DB"],
                                   "quickdata")
     sim_data_dir = os.path.join(quick_data_dir,
                                 "allref_85-05_nan-0.1_00-1.0")
     data_dir = os.path.join(quick_data_dir,
                             "allnonref_85-05_nan-0.1_00-1.0")
     data_model_sim8595 = GagesModel.load_datamodel(
         sim_data_dir,
         data_source_file_name='data_source.txt',
         stat_file_name='Statistics.json',
         flow_file_name='flow.npy',
         forcing_file_name='forcing.npy',
         attr_file_name='attr.npy',
         f_dict_file_name='dictFactorize.json',
         var_dict_file_name='dictAttribute.json',
         t_s_dict_file_name='dictTimeSpace.json')
     data_model_8595 = GagesModel.load_datamodel(
         data_dir,
         data_source_file_name='data_source.txt',
         stat_file_name='Statistics.json',
         flow_file_name='flow.npy',
         forcing_file_name='forcing.npy',
         attr_file_name='attr.npy',
         f_dict_file_name='dictFactorize.json',
         var_dict_file_name='dictAttribute.json',
         t_s_dict_file_name='dictTimeSpace.json')
     sim_gages_model_train = GagesModel.update_data_model(
         self.sim_config_data, data_model_sim8595, data_attr_update=True)
     gages_model_train = GagesModel.update_data_model(self.config_data,
                                                      data_model_8595,
                                                      data_attr_update=True)
     nid_dir = os.path.join(
         "/".join(self.config_data.data_path["DB"].split("/")[:-1]), "nid",
         "quickdata")
     gage_main_dam_purpose = unserialize_json(
         os.path.join(nid_dir, "dam_main_purpose_dict.json"))
     gage_main_dam_purpose_lst = list(gage_main_dam_purpose.values())
     gage_main_dam_purpose_unique = np.unique(gage_main_dam_purpose_lst)
     nid_dir = os.path.join(
         "/".join(self.config_data.data_path["DB"].split("/")[:-1]), "nid",
         "quickdata")
     nid_input = NidModel.load_nidmodel(
         nid_dir,
         nid_file=self.nid_file,
         nid_source_file_name='nid_source.txt',
         nid_data_file_name='nid_data.shp')
     gage_main_dam_purpose = unserialize_json(
         os.path.join(nid_dir, "dam_main_purpose_dict.json"))
     data_input = GagesDamDataModel(gages_model_train, nid_input, True,
                                    gage_main_dam_purpose)
     with torch.cuda.device(0):
         for i in range(0, gage_main_dam_purpose_unique.size):
             sim_gages_model_train.update_model_param('train', nEpoch=300)
             gages_input = choose_which_purpose(
                 data_input, purpose=gage_main_dam_purpose_unique[i])
             new_temp_dir = os.path.join(
                 gages_input.data_source.data_config.model_dict["dir"]
                 ["Temp"], gage_main_dam_purpose_unique[i])
             new_out_dir = os.path.join(
                 gages_input.data_source.data_config.model_dict["dir"]
                 ["Out"], gage_main_dam_purpose_unique[i])
             gages_input.update_datamodel_dir(new_temp_dir, new_out_dir)
             data_model = GagesSimDataModel(sim_gages_model_train,
                                            gages_input)
             # pre_trained_model_epoch = 25
             # master_train_natural_flow(data_model, pre_trained_model_epoch=pre_trained_model_epoch)
             master_train_natural_flow(data_model)
コード例 #10
0
    def test_dam_test(self):
        quick_data_dir = os.path.join(self.config_data.data_path["DB"],
                                      "quickdata")
        sim_data_dir = os.path.join(quick_data_dir,
                                    "allref_85-05_nan-0.1_00-1.0")
        data_dir = os.path.join(quick_data_dir,
                                "allnonref_85-05_nan-0.1_00-1.0")
        data_model_sim8595 = GagesModel.load_datamodel(
            sim_data_dir,
            data_source_file_name='data_source.txt',
            stat_file_name='Statistics.json',
            flow_file_name='flow.npy',
            forcing_file_name='forcing.npy',
            attr_file_name='attr.npy',
            f_dict_file_name='dictFactorize.json',
            var_dict_file_name='dictAttribute.json',
            t_s_dict_file_name='dictTimeSpace.json')
        data_model_8595 = GagesModel.load_datamodel(
            data_dir,
            data_source_file_name='data_source.txt',
            stat_file_name='Statistics.json',
            flow_file_name='flow.npy',
            forcing_file_name='forcing.npy',
            attr_file_name='attr.npy',
            f_dict_file_name='dictFactorize.json',
            var_dict_file_name='dictAttribute.json',
            t_s_dict_file_name='dictTimeSpace.json')
        data_model_sim9505 = GagesModel.load_datamodel(
            sim_data_dir,
            data_source_file_name='test_data_source.txt',
            stat_file_name='test_Statistics.json',
            flow_file_name='test_flow.npy',
            forcing_file_name='test_forcing.npy',
            attr_file_name='test_attr.npy',
            f_dict_file_name='test_dictFactorize.json',
            var_dict_file_name='test_dictAttribute.json',
            t_s_dict_file_name='test_dictTimeSpace.json')
        data_model_9505 = GagesModel.load_datamodel(
            data_dir,
            data_source_file_name='test_data_source.txt',
            stat_file_name='test_Statistics.json',
            flow_file_name='test_flow.npy',
            forcing_file_name='test_forcing.npy',
            attr_file_name='test_attr.npy',
            f_dict_file_name='test_dictFactorize.json',
            var_dict_file_name='test_dictAttribute.json',
            t_s_dict_file_name='test_dictTimeSpace.json')

        sim_gages_model_train = GagesModel.update_data_model(
            self.sim_config_data, data_model_sim8595, data_attr_update=True)
        gages_model_train = GagesModel.update_data_model(self.config_data,
                                                         data_model_8595,
                                                         data_attr_update=True)
        sim_gages_model_test = GagesModel.update_data_model(
            self.sim_config_data,
            data_model_sim9505,
            data_attr_update=True,
            train_stat_dict=sim_gages_model_train.stat_dict)
        gages_model_test = GagesModel.update_data_model(
            self.config_data,
            data_model_9505,
            data_attr_update=True,
            train_stat_dict=gages_model_train.stat_dict)
        nid_dir = os.path.join(
            "/".join(self.config_data.data_path["DB"].split("/")[:-1]), "nid",
            "quickdata")
        nid_input = NidModel.load_nidmodel(
            nid_dir,
            nid_file=self.nid_file,
            nid_source_file_name='nid_source.txt',
            nid_data_file_name='nid_data.shp')
        gage_main_dam_purpose = unserialize_json(
            os.path.join(nid_dir, "dam_main_purpose_dict.json"))
        gage_main_dam_purpose_lst = list(gage_main_dam_purpose.values())
        gage_main_dam_purpose_unique = np.unique(gage_main_dam_purpose_lst)
        data_input = GagesDamDataModel(gages_model_test, nid_input, True,
                                       gage_main_dam_purpose)
        for i in range(0, gage_main_dam_purpose_unique.size):
            sim_gages_model_test.update_model_param('train', nEpoch=300)
            gages_input = choose_which_purpose(
                data_input, purpose=gage_main_dam_purpose_unique[i])
            new_temp_dir = os.path.join(
                gages_input.data_source.data_config.model_dict["dir"]["Temp"],
                gage_main_dam_purpose_unique[i])
            new_out_dir = os.path.join(
                gages_input.data_source.data_config.model_dict["dir"]["Out"],
                gage_main_dam_purpose_unique[i])
            gages_input.update_datamodel_dir(new_temp_dir, new_out_dir)
            model_input = GagesSimDataModel(sim_gages_model_test, gages_input)
            pred, obs = master_test_natural_flow(model_input,
                                                 epoch=self.test_epoch)
            basin_area = model_input.data_model2.data_source.read_attr(
                model_input.data_model2.t_s_dict["sites_id"], ['DRAIN_SQKM'],
                is_return_dict=False)
            mean_prep = model_input.data_model2.data_source.read_attr(
                model_input.data_model2.t_s_dict["sites_id"], ['PPTAVG_BASIN'],
                is_return_dict=False)
            mean_prep = mean_prep / 365 * 10
            pred = _basin_norm(pred, basin_area, mean_prep, to_norm=False)
            obs = _basin_norm(obs, basin_area, mean_prep, to_norm=False)
            save_result(
                model_input.data_model2.data_source.data_config.
                data_path['Temp'], str(self.test_epoch), pred, obs)
            plot_we_need(gages_input,
                         obs,
                         pred,
                         id_col="STAID",
                         lon_col="LNG_GAGE",
                         lat_col="LAT_GAGE")
コード例 #11
0
    def test_gages_nse_dam_attr(self):
        figure_dpi = 600
        config_data = self.config_data
        data_dir = config_data.data_path["Temp"]
        data_model = GagesModel.load_datamodel(
            data_dir,
            data_source_file_name='test_data_source.txt',
            stat_file_name='test_Statistics.json',
            flow_file_name='test_flow.npy',
            forcing_file_name='test_forcing.npy',
            attr_file_name='test_attr.npy',
            f_dict_file_name='test_dictFactorize.json',
            var_dict_file_name='test_dictAttribute.json',
            t_s_dict_file_name='test_dictTimeSpace.json')
        gages_id = data_model.t_s_dict["sites_id"]

        exp_lst = [
            "basic_exp37", "basic_exp39", "basic_exp40", "basic_exp41",
            "basic_exp42", "basic_exp43"
        ]
        self.inds_df, pred_mean, obs_mean = load_ensemble_result(
            config_data.config_file,
            exp_lst,
            config_data.config_file.TEST_EPOCH,
            return_value=True)
        show_ind_key = 'NSE'

        plt.rcParams['font.family'] = 'serif'
        plt.rcParams['font.serif'] = ['Times New Roman'
                                      ] + plt.rcParams['font.serif']
        # plot NSE-DOR
        attr_lst = ["RUNAVE7100", "STOR_NOR_2009"]
        attrs_runavg_stor = data_model.data_source.read_attr(
            gages_id, attr_lst, is_return_dict=False)
        run_avg = attrs_runavg_stor[:, 0] * (10**(-3)) * (10**6
                                                          )  # m^3 per year
        nor_storage = attrs_runavg_stor[:, 1] * 1000  # m^3
        dors = nor_storage / run_avg
        # dor = 0 is not totally same with dam_num=0 (some dammed basins' dor is about 0.00),
        # here for zero-dor we mainly rely on dam_num = 0
        attr_dam_num = ["NDAMS_2009"]
        attrs_dam_num = data_model.data_source.read_attr(gages_id,
                                                         attr_dam_num,
                                                         is_return_dict=False)
        df = pd.DataFrame({
            "DOR": dors,
            "DAM_NUM": attrs_dam_num[:, 0],
            show_ind_key: self.inds_df[show_ind_key].values
        })
        hydro_logger.info("statistics of dors:\n %s", df.describe())
        hydro_logger.info("percentiles of dors:\n %s", df.quantile(q=0.95))
        hydro_logger.info("ecdf of dors:\n %s", ecdf(dors))

        # boxplot
        # add a column to represent the dor range for the df
        dor_value_range_lst = [[0, 0], [0, 0.02], [0.02, 0.05], [0.05, 0.1],
                               [0.1, 0.2], [0.2, 0.4], [0.4, 0.8],
                               [0.8, 10000]]
        dor_range_lst = ["0"] + [
            str(dor_value_range_lst[i][0]) + "-" +
            str(dor_value_range_lst[i][1])
            for i in range(1,
                           len(dor_value_range_lst) - 1)
        ] + [">" + str(dor_value_range_lst[-1][0])]

        # add a column to represent the dam_num range for the df
        dam_num_value_range_lst = [[0, 0], [0, 1], [1, 3], [3, 5], [5, 10],
                                   [10, 20], [20, 50], [50, 10000]]
        dam_num_range_lst = ["0", "1"] + [
            str(dam_num_value_range_lst[i][0]) + "-" +
            str(dam_num_value_range_lst[i][1])
            for i in range(2,
                           len(dam_num_value_range_lst) - 1)
        ] + [">" + str(dam_num_value_range_lst[-1][0])]

        def in_which_range(value_temp):
            if value_temp == 0:
                return "0"
            the_range = [
                a_range for a_range in dor_value_range_lst
                if a_range[0] < value_temp <= a_range[1]
            ]
            if the_range[0][0] == dor_value_range_lst[-1][0]:
                the_range_str = ">" + str(the_range[0][0])
            else:
                the_range_str = str(the_range[0][0]) + "-" + str(
                    the_range[0][1])
            return the_range_str

        def in_which_dam_num_range(value_tmp):
            if value_tmp == 0:
                return "0"
            if value_tmp == 1:
                return "1"
            the_ran = [
                a_ran for a_ran in dam_num_value_range_lst
                if a_ran[0] < value_tmp <= a_ran[1]
            ]
            if the_ran[0][0] == dam_num_value_range_lst[-1][0]:
                the_ran_str = ">" + str(the_ran[0][0])
            else:
                the_ran_str = str(the_ran[0][0]) + "-" + str(the_ran[0][1])
            return the_ran_str

        df["DOR_RANGE"] = df["DOR"].apply(in_which_range)
        df["DAM_NUM_RANGE"] = df["DAM_NUM"].apply(in_which_dam_num_range)
        df.loc[(df["DAM_NUM"] > 0) & (df["DOR_RANGE"] == "0"),
               "DOR_RANGE"] = dor_range_lst[1]
        shown_nse_range_boxplots = [-0.5, 1.0]
        sns.set(font="serif", font_scale=1.5, color_codes=True)
        plot_boxs(df,
                  "DOR_RANGE",
                  show_ind_key,
                  ylim=shown_nse_range_boxplots,
                  order=dor_range_lst)
        plt.savefig(os.path.join(
            config_data.data_path["Out"],
            'NSE~DOR-boxplots-' + str(shown_nse_range_boxplots) + '.png'),
                    dpi=figure_dpi,
                    bbox_inches="tight")
        plt.figure()
        shown_nse_range_boxplots = [0, 1.0]
        sns.set(font="serif", font_scale=1.5, color_codes=True)
        plot_boxs(df,
                  "DAM_NUM_RANGE",
                  show_ind_key,
                  ylim=shown_nse_range_boxplots,
                  order=dam_num_range_lst)
        plt.savefig(os.path.join(
            config_data.data_path["Out"],
            'NSE~DAM_NUM-boxplots-' + str(shown_nse_range_boxplots) + '.png'),
                    dpi=figure_dpi,
                    bbox_inches="tight")
        nums_in_dor_range = [
            df[df["DOR_RANGE"] == a_range_rmp].shape[0]
            for a_range_rmp in dor_range_lst
        ]
        ratios_in_dor_range = [
            a_num / df.shape[0] for a_num in nums_in_dor_range
        ]
        hydro_logger.info(
            "the number and ratio of basins in each dor range\n: %s \n %s",
            nums_in_dor_range, ratios_in_dor_range)

        nums_in_dam_num_range = [
            df[df["DAM_NUM_RANGE"] == a_range_rmp].shape[0]
            for a_range_rmp in dam_num_range_lst
        ]
        ratios_in_dam_num_range = [
            a_num / df.shape[0] for a_num in nums_in_dam_num_range
        ]
        hydro_logger.info(
            "the number and ratio of basins in each dam_num range\n: %s \n %s",
            nums_in_dam_num_range, ratios_in_dam_num_range)

        # regplot
        plt.figure()
        sns.set(font="serif", font_scale=1.5, color_codes=True)
        sr = sns.regplot(x="DOR",
                         y=show_ind_key,
                         data=df[df[show_ind_key] >= 0],
                         scatter_kws={'s': 10})
        show_dor_max = df.quantile(
            q=0.95)["DOR"]  # 30  # max(dors)  # 0.8  # 10
        show_dor_min = min(dors)
        plt.ylim(0, 1)
        plt.xlim(show_dor_min, show_dor_max)
        plt.savefig(os.path.join(
            config_data.data_path["Out"],
            'NSE~DOR-shown-max-' + str(show_dor_max) + '.png'),
                    dpi=figure_dpi,
                    bbox_inches="tight")

        # jointplot
        # dor_range = [0.2, 0.9]
        dor_range = [0.002, 0.2]
        # plt.figure()
        sns.set(font="serif", font_scale=1.5, color_codes=True)
        # g = sns.jointplot(x="DOR", y=show_ind_key, data=df[(df["DOR"] < 1) & (df[show_ind_key] >= 0)], kind="reg",
        #                   marginal_kws=dict(bins=25))
        # g = sns.jointplot(x="DOR", y=show_ind_key, data=df[(df["DOR"] < 1) & (df[show_ind_key] >= 0)], kind="hex",
        #                   color="b", marginal_kws=dict(bins=50))
        g = sns.jointplot(
            x="DOR",
            y=show_ind_key,
            data=df[(df["DOR"] < dor_range[1]) & (df["DOR"] > dor_range[0]) &
                    (df[show_ind_key] >= 0)],
            kind="hex",
            color="b")
        g.ax_marg_x.set_xlim(dor_range[0], dor_range[1])
        # g.ax_marg_y.set_ylim(-0.5, 1)
        plt.savefig(os.path.join(
            config_data.data_path["Out"],
            'NSE~DOR(range-)' + str(dor_range) + '-jointplot.png'),
                    dpi=figure_dpi,
                    bbox_inches="tight")

        nid_dir = os.path.join(
            "/".join(self.config_data.data_path["DB"].split("/")[:-1]), "nid",
            "test")
        nid_input = NidModel.load_nidmodel(
            nid_dir,
            nid_source_file_name='nid_source.txt',
            nid_data_file_name='nid_data.shp')
        gage_main_dam_purpose = unserialize_json(
            os.path.join(nid_dir, "dam_main_purpose_dict.json"))
        data_input = GagesDamDataModel(data_model, nid_input,
                                       gage_main_dam_purpose)
        dam_coords = unserialize_json_ordered(
            os.path.join(nid_dir, "dam_points_dict.json"))
        dam_storages = unserialize_json_ordered(
            os.path.join(nid_dir, "dam_storages_dict.json"))
        dam_ids_1 = list(gage_main_dam_purpose.keys())
        dam_ids_2 = list(dam_coords.keys())
        dam_ids_3 = list(dam_storages.keys())
        assert (all(x < y for x, y in zip(dam_ids_1, dam_ids_1[1:])))
        assert (all(x < y for x, y in zip(dam_ids_2, dam_ids_2[1:])))
        assert (all(x < y for x, y in zip(dam_ids_3, dam_ids_3[1:])))

        sites = list(dam_coords.keys())
        c, ind1, idx_lst_nse_range = np.intersect1d(sites,
                                                    gages_id,
                                                    return_indices=True)

        std_storage_in_a_basin = list(map(np.std, dam_storages.values()))
        log_std_storage_in_a_basin = list(
            map(np.log,
                np.array(std_storage_in_a_basin) + 1))
        nse_values = self.inds_df["NSE"].values[idx_lst_nse_range]
        df = pd.DataFrame({
            "DAM_STORAGE_STD": log_std_storage_in_a_basin,
            show_ind_key: nse_values
        })
        plt.figure()
        sns.set(font="serif", font_scale=1.5, color_codes=True)
        g = sns.regplot(x="DAM_STORAGE_STD",
                        y=show_ind_key,
                        data=df[df[show_ind_key] >= 0],
                        scatter_kws={'s': 10})
        show_max = max(log_std_storage_in_a_basin)
        show_min = min(log_std_storage_in_a_basin)
        if show_min < 0:
            show_min = 0
        # g.ax_marg_x.set_xlim(show_min, show_max)
        # g.ax_marg_y.set_ylim(0, 1)
        plt.ylim(0, 1)
        plt.xlim(show_min, show_max)
        plt.savefig(os.path.join(config_data.data_path["Out"],
                                 'NSE~' + "DAM_STORAGE_STD" + '.png'),
                    dpi=figure_dpi,
                    bbox_inches="tight")

        gages_loc_lat = data_model.data_source.gage_dict["LAT_GAGE"]
        gages_loc_lon = data_model.data_source.gage_dict["LNG_GAGE"]
        gages_loc = [[gages_loc_lat[i], gages_loc_lon[i]]
                     for i in range(len(gages_id))]
        # calculate index of dispersion, then plot the NSE-dispersion scatterplot
        # Geo coord system of gages_loc and dam_coords are both NAD83
        coefficient_of_var = list(
            map(coefficient_of_variation, gages_loc, dam_coords.values()))
        coefficient_of_var_min = min(coefficient_of_var)
        coefficient_of_var_max = max(coefficient_of_var)
        dispersion_var = "DAM_GAGE_DIS_VAR"
        nse_values = self.inds_df["NSE"].values[idx_lst_nse_range]
        df = pd.DataFrame({
            dispersion_var: coefficient_of_var,
            show_ind_key: nse_values
        })
        plt.figure()
        sns.set(font="serif", font_scale=1.5, color_codes=True)
        g = sns.regplot(x=dispersion_var,
                        y=show_ind_key,
                        data=df[df[show_ind_key] >= 0],
                        scatter_kws={'s': 10})
        show_max = coefficient_of_var_max
        show_min = coefficient_of_var_min
        if show_min < 0:
            show_min = 0
        # g.ax_marg_x.set_xlim(show_min, show_max)
        # g.ax_marg_y.set_ylim(0, 1)
        plt.ylim(0, 1)
        plt.xlim(show_min, show_max)
        plt.savefig(os.path.join(config_data.data_path["Out"],
                                 'NSE~' + dispersion_var + '.png'),
                    dpi=figure_dpi,
                    bbox_inches="tight")

        idx_dispersions = list(
            map(ind_of_dispersion, gages_loc, dam_coords.values()))
        idx_dispersion_min = min(idx_dispersions)
        idx_dispersion_max = max(idx_dispersions)
        dispersion_var = "DAM_DISPERSION_BASIN"
        # nse_range = [0, 1]
        # idx_lst_nse_range = inds_df_now[(inds_df_now[show_ind_key] >= nse_range[0]) & (inds_df_now[show_ind_key] < nse_range[1])].index.tolist()
        nse_values = self.inds_df["NSE"].values[idx_lst_nse_range]
        df = pd.DataFrame({
            dispersion_var: idx_dispersions,
            show_ind_key: nse_values
        })
        # g = sns.regplot(x=dispersion_var, y=show_ind_key, data=df[df[show_ind_key] >= 0], scatter_kws={'s': 10})
        if idx_dispersion_min < 0:
            idx_dispersion_min = 0
        plt.ylim(0, 1)
        plt.xlim(idx_dispersion_min, idx_dispersion_max)
        # plt.figure()
        sns.set(font="serif", font_scale=1.5, color_codes=True)
        g = sns.jointplot(x=dispersion_var,
                          y=show_ind_key,
                          data=df[df[show_ind_key] >= 0],
                          kind="reg")
        g.ax_marg_x.set_xlim(idx_dispersion_min, idx_dispersion_max)
        g.ax_marg_y.set_ylim(0, 1)
        plt.show()
コード例 #12
0
                                include=True):
            diversions[i] = "yes"

    nid_gene_file = os.path.join(cfg.NID.NID_DIR, "test",
                                 "dam_main_purpose_dict.json")
    if not os.path.isfile(nid_gene_file):
        df = GagesModel.load_datamodel(cfg.CACHE.DATA_DIR,
                                       data_source_file_name='data_source.txt',
                                       stat_file_name='Statistics.json',
                                       flow_file_name='flow.npy',
                                       forcing_file_name='forcing.npy',
                                       attr_file_name='attr.npy',
                                       f_dict_file_name='dictFactorize.json',
                                       var_dict_file_name='dictAttribute.json',
                                       t_s_dict_file_name='dictTimeSpace.json')
        nid_input = NidModel(cfg)
        nid_dir = os.path.join(cfg.NID.NID_DIR, "test")
        save_nidinput(nid_input,
                      nid_dir,
                      nid_source_file_name='nid_source.txt',
                      nid_data_file_name='nid_data.shp')
        data_input = GagesDamDataModel(df, nid_input)
        serialize_json(data_input.gage_main_dam_purpose,
                       os.path.join(nid_dir, "dam_main_purpose_dict.json"))
    gage_main_dam_purpose = unserialize_json(nid_gene_file)
    gage_main_dam_purpose_lst = list(gage_main_dam_purpose.values())
    gage_main_dam_purpose_lst_merge = "".join(gage_main_dam_purpose_lst)
    gage_main_dam_purpose_unique = np.unique(
        list(gage_main_dam_purpose_lst_merge))
    # gage_main_dam_purpose_unique = np.unique(gage_main_dam_purpose_lst)
    purpose_regions = {}