def execute():
    test_data = load_npy_file(npy_files_dir_path + 'test_z_data.npy')
    test_labels = load_npy_file(npy_files_dir_path + 'test_labels.npy')

    one_hot_test_labels = tf.keras.utils.to_categorical(test_labels)

    model = tf.keras.models.load_model(model_saving_dir_path + 'model_Z.h5')

    loss, acc = model.evaluate(test_data, one_hot_test_labels)
    print_loss_acc(loss, acc)
コード例 #2
0
def execute():
    test_data = load_npy_file(npy_files_dir_path + 'test_y_data.npy')
    test_labels = load_npy_file(npy_files_dir_path + 'test_labels.npy')

    one_hot_test_labels = tf.keras.utils.to_categorical(test_labels)

    model = tf.keras.models.load_model(model_saving_dir_path + 'model_Y.h5')

    loss, acc = model.evaluate(test_data, one_hot_test_labels)
    print_loss_acc(loss, acc)

    converter = tf.lite.TFLiteConverter.from_keras_model(model)
    tf_lite_model = converter.convert()

    create_dir_if_necessary(tf_lite_model_saving_dir_path)

    open(tf_lite_model_saving_dir_path + 'model_Y.tflite', 'wb').write(tf_lite_model)
def main():
    x_train = load_npy_file(npy_files_saving_dir_path + 'train_x_data.npy')
    x_val = load_npy_file(npy_files_saving_dir_path + 'valid_x_data.npy')
    x_test = load_npy_file(npy_files_saving_dir_path + 'test_x_data.npy')

    y_train = load_npy_file(npy_files_saving_dir_path + 'train_labels.npy')
    y_val = load_npy_file(npy_files_saving_dir_path + 'valid_labels.npy')
    y_test = load_npy_file(npy_files_saving_dir_path + 'test_labels.npy')

    print(len(x_train) == len(y_train))
    print(len(x_val) == len(y_val))
    print(len(x_test) == len(y_test))
def execute():
    train_data = load_npy_file(npy_files_dir_path + 'train_z_data.npy')
    valid_data = load_npy_file(npy_files_dir_path + 'valid_z_data.npy')
    test_data = load_npy_file(npy_files_dir_path + 'test_z_data.npy')

    train_labels = load_npy_file(npy_files_dir_path + 'train_labels.npy')
    valid_labels = load_npy_file(npy_files_dir_path + 'valid_labels.npy')
    test_labels = load_npy_file(npy_files_dir_path + 'test_labels.npy')

    one_hot_train_labels = tf.keras.utils.to_categorical(train_labels)
    one_hot_valid_labels = tf.keras.utils.to_categorical(valid_labels)
    one_hot_test_labels = tf.keras.utils.to_categorical(test_labels)

    model = tf.keras.models.Sequential([
        tf.keras.layers.Dense(512, activation='relu'),
        tf.keras.layers.Dense(512, activation='relu'),
        tf.keras.layers.Dense(3, activation='softmax')
    ])

    model.compile(
        optimizer='rmsprop',
        loss='categorical_crossentropy',
        metrics=['accuracy']
    )

    history = model.fit(
        train_data,
        one_hot_train_labels,
        epochs=20,
        batch_size=512,
        validation_data=(valid_data, one_hot_valid_labels)
    )

    create_dir_if_necessary(model_saving_dir_path)

    model.save(model_saving_dir_path + 'model_Z.h5')

    loss, acc = model.evaluate(test_data, one_hot_test_labels)
    print_loss_acc(loss, acc)

    show_loss(history)
    show_accuracy(history)