コード例 #1
0
            dt = hf['test']['dt'][:256]
            gt = hf['test']['gt'][:256]

        predict_file = os.path.join(output_path, "predict.txt")
        predicts = [''] * len(dt)

        if os.path.isfile(predict_file):
            with open(predict_file, "r") as lg:
                predicts = [line[5:] for line in lg if line.startswith("TE_P")]

        for x in range(len(dt)):
            print(f"Image shape:\t{dt[x].shape}")
            print(f"Ground truth:\t{gt[x].decode()}")
            print(f"Predict:\t{predicts[x]}\n")

            cv2.imshow("img", pp.adjust_to_see(dt[x]))
            cv2.waitKey(0)

    elif args.image:
        tokenizer = Tokenizer(chars=charset_base,
                              max_text_length=max_text_length)

        img = pp.preproc(args.image, input_size=input_size)
        x_test = pp.normalization([img])

        model = HTRModel(architecture=args.arch,
                         input_size=input_size,
                         vocab_size=tokenizer.vocab_size,
                         top_paths=10)

        model.compile()
コード例 #2
0
                                  compression="gzip",
                                  compression_opts=9)
                print(f"[OK] {i} partition.")

        print(f"Transformation finished.")

    elif args.cv2:
        with h5py.File(hdf5_src, "r") as hf:
            dt = hf["test"]["dt"][:]
            gt = hf["test"]["gt"][:]

        for x in range(len(dt)):
            print(f"Image shape: {dt[x].shape}")
            print(f"Ground truth: {gt[x].decode()}\n")

            cv2.imshow("img", pp.adjust_to_see(dt[x]))
            cv2.waitKey(0)

    elif args.train or args.test:
        os.makedirs(output_path, exist_ok=True)

        dtgen = DataGenerator(hdf5_src=hdf5_src,
                              batch_size=args.batch_size,
                              charset=charset_base,
                              max_text_length=max_text_length)

        network_func = getattr(architecture, args.arch)

        ioo = network_func(input_size=input_size,
                           output_size=(dtgen.tokenizer.vocab_size + 1),
                           learning_rate=0.001)