download=True, transform=transform_svhn) dataset_test = datasets.SVHN('../data/svhn', split='test', download=True, transform=transform_svhn_test) else: exit('Error: unrecognized dataset') dataset_valid = dataset_test if args.iid == 'noniid_ssl' and args.dataset == 'cifar': dict_users, dict_users_labeled, pseudo_label = noniid_ssl( dataset_train, args.num_users, args.label_rate) else: dict_users, dict_users_labeled, pseudo_label = sample( dataset_train, args.num_users, args.label_rate, args.iid) if args.dataset == 'cifar': net_glob = CNNCifar(args=args).to(args.device) elif args.dataset == 'mnist': net_glob = CNNMnist(args=args).to(args.device) elif args.dataset == 'svhn': net_glob = CNNCifar(args=args).to(args.device) else: exit('Error: unrecognized model') print("\n Begin Train") net_glob.train() w_glob = net_glob.state_dict()
""" -- ------------------------------------------------------------------ -- Title: Explore data on sepsis patients -- Description: -- Start off on comparing mortality rates -- Followed by comparing teaching hospitals -- ------------------------------------------------------------------ """ import data.sampling as sampling import pandas as pd import csv #get sample population sample_eicu = sampling.sample(path="../data/raw/") sample_sepsis = sampling.sample(db="sepsis", path="../data/interim/") df_eicu = pd.Series.to_frame(sample_eicu) df_sepsis = pd.Series.to_frame(sample_sepsis)