コード例 #1
0
    def generate_targets(self):
        if self.targets: return self.targets
        l = []

        # gather all file names into one list
        for k in self.pair_dict.keys():
            l.append(k[0])
            l.append(k[1])
        l = list(set(l))

        out_dict = self.pair_dict.copy()
        # loop through every combination
        for mid1 in l:
            for mid2 in l:
                if mid1 == mid2: pass
                elif (mid1, mid2) in out_dict.keys(): pass
                elif (mid2, mid1) in out_dict.keys(): pass
                else:
                    out_dict[(mid1, mid2)] = 0

        s = []
        for k, v in out_dict.items():
            if self.prefix in k[0]: k0 = self.pieces_dict[k[0]]
            else: k0 = data.Piece(k[0])
            if self.prefix in k[1]: k1 = self.pieces_dict[k[1]]
            else: k1 = data.Piece(k[1])
            s.append((k0, k1, v))
        self.targets = s
        return s
コード例 #2
0
    def __init__(self, type, pieces):
        '''
        type is a str describing the category that the training pieces are in
        pieces is a set of the pieces in that category
        '''
        self.type = type
        self.pieces = set(pieces)

        mm = cmm.Markov()
        reverse_mm = cmm.Markov()

        c = patterns.fetch_classifier()
        segmentation = False
        all_keys = False

        for p in self.pieces:
            print(p)
            musicpiece = data.Piece(p)
            # segmentation off by default, all_keys off by default
            # this should automatically transpose everything to C major
            _mm = cmm.piece_to_markov_model(musicpiece, c, segmentation,
                                            all_keys)
            mm = mm.add_model(_mm)

            # now reverse the state chains to get the reverse mm
            b = _mm.state_chains
            rev_chains = [chain[::-1] for chain in _mm.state_chains]
            _mm.state_chains = rev_chains
            reverse_mm = reverse_mm.add_model(_mm)

        self.mm = mm
        self.rev_mm = reverse_mm
コード例 #3
0
    def generate_targets_subset(self):
        # produces the same list as generate_target() but limits the number of
        # elements which have target=0 to be (linearly) proportional to the number
        # elements which have target=1
        if self.targets: return self.targets
        l = []

        # gather all file names into one list
        for k in self.pair_dict.keys():
            l.append(k[0])
            l.append(k[1])
        l = list(set(l))

        out_dict = self.pair_dict.copy()
        # loop through every combination
        counter = 0
        for mid1 in l:
            for mid2 in l:
                if mid1 == mid2: pass
                elif (mid1, mid2) in out_dict.keys(): pass
                elif (mid2, mid1) in out_dict.keys(): pass
                else:
                    if counter > 4 * len(self.pair_dict.keys())**1.5:
                        pass
                    else:
                        counter += 1
                        out_dict[(mid1, mid2)] = 0
        s = []
        for k, v in out_dict.items():
            if self.prefix in k[0]: k0 = self.pieces_dict[k[0]]
            else: k0 = data.Piece(k[0])
            if self.prefix in k[1]: k1 = self.pieces_dict[k[1]]
            else: k1 = data.Piece(k[1])
            s.append((k0, k1, v))
        self.targets = s
        return s
コード例 #4
0
    def add_piece(self, piece):
        '''
        Add a new piece to the model.
        :param piece: location of midi
        :return: None
        '''
        if piece in self.pieces:
            print(piece + " already in model.")
            return

        c = patterns.fetch_classifier()
        segmentation = False
        all_keys = True

        musicpiece = data.Piece(piece)
        _mm = cmm.piece_to_markov_model(musicpiece, c, segmentation, all_keys)
        self.mm = self.mm.add_model(_mm)

        b = _mm.state_chains
        rev_chains = [chain[::-1] for chain in _mm.state_chains]
        _mm.state_chains = rev_chains
        self.rev_mm = self.rev_mm.add_model(_mm)
コード例 #5
0
    ]
    l.append(d)

    return l


if __name__ == '__main__':
    svc = svm.SVC(kernel='rbf', C=10000)
    rforest = RandomForestClassifier(n_estimators=100)
    lr = linear_model.LogisticRegression(C=1)

    if len(sys.argv) == 1:
        max_ = 0
        count, scores = 0, []
        truth = chord_truths()[0]
        musicpiece = data.Piece(truth['piece'])
        while count < 30:
            #cc = chord_classifier(rforest)
            #cc.train()
            cc = fetch_classifier()
            allbars = cc.predict(musicpiece)
            s = 0
            for i in range(len(truth['chords'])):
                if truth['chords'][i] == allbars[i]:
                    s += 1
            print('Correct Score: {}/{}'.format(s, len(truth['chords'])))
            count += 1
            scores.append(s)
            print('Count =', count)

            #if s > max_ and s > 38:
コード例 #6
0
def recommend(piece1, style, training, typ, num_recs=4, piece2=None):
    '''
    The handler for an API call
    '''

    # check if this already exists
    name = ".cached/rec/rec-{}-{}.pkl".format(style, hash(frozenset(training)))
    if os.path.isfile(name):
        with open(name, "rb") as fh:
            rec = cPickle.load(fh)
    else:
        rec = Recommender(style, training)
        rec.save()

    # get the incomplete piece
    piece1 = data.Piece(piece1)
    # label the piece by chords, determine the length of the seed bars
    use_chords = True
    key_sig, unshifted_state_chain = cmm.NoteState.piece_to_state_chain(
        piece1, use_chords)
    offset = cmm.get_key_offset(key_sig[0], 'C')
    state_chain1 = [s.transpose(offset) for s in unshifted_state_chain]

    if piece2 is not None:
        piece2 = data.Piece(piece2)
        key_sig, unshifted_state_chain = cmm.NoteState.piece_to_state_chain(
            piece2, use_chords)
        offset = cmm.get_key_offset(key_sig[0], 'C')
        state_chain2 = [s.transpose(offset) for s in unshifted_state_chain]

    # modes: preceding, bridging, and following
    if typ is 'pre':
        seed = []
        end = [state_chain1[0]]
    elif piece2 is not None and typ is 'bridge':
        seed = [state_chain1[-1]]
        end = [state_chain2[0]]
    elif typ is 'post':
        seed = [state_chain1[-1]]
        end = []
    else:  # this shouldn't happen
        print("Error: Second piece not given")
        return 0

    # generate new states by providing the seed bars
    # do this several times and see if we get a different result
    results = []
    for i in range(num_recs):
        res = rec.recommend(seed, 100, end)
        print([g.origin + ('-' if g.chord else '') + g.chord for g in res])
        if res not in results:
            results.append(res)

    # write out the 'best' result as a midi piece (for now, just pick the first one)
    result = results[0]

    if typ is 'pre':
        result.extend(state_chain1)
        music = cmm.NoteState.state_chain_to_notes(result, piece1.bar)
    elif typ is 'post':
        state_chain1.extend(result)
        music = cmm.NoteState.state_chain_to_notes(state_chain1, piece1.bar)
    else:
        state_chain1.extend(result)
        state_chain1.extend(state_chain2)
        music = cmm.NoteState.state_chain_to_notes(state_chain1, piece1.bar)

    song = [piece1.meta]
    song.append([n.note_event() for n in music])

    midi.write('rec.mid', song)
コード例 #7
0
 def add_pair_by_bars(self, filename, b00, b01, b10, b11):
     p = data.Piece(filename)
     p1 = p.segment_by_bars(b00, b01)
     p2 = p.segment_by_bars(b10, b11)
     self.add_pair(p1, p2)
コード例 #8
0
 def get_patterns(filename, b0, b1):
     musicpiece = data.Piece(filename)
     a = analysis(musicpiece, c, b0, b1)
     chosenscore, chosen, labelled_sections = a.chosenscore, a.chosen, a.labelled_sections
     a.chosenlabels = [(b, labelled_sections[b]) for b in chosen]
     return a
コード例 #9
0
        labelled_chosen = [(b, labelled_sections[b]) for b in chosen]
        '''
        for c1 in chosen:
            label = labelled_sections[c1]
            start, dur = c1


            segmentation(Piece, d, match, default_scoring_fn, start, dur, section_prefix=label, depth+1)
        '''

    return chosenscore, chosen, score, labelled_sections, bestscore


if __name__ == '__main__':
    c = fetch_classifier()
    musicpiece = data.Piece(sys.argv[1])

    if len(sys.argv
           ) == 5:  # midi-file, min_bars, start_bar_index, end_bar_index
        musicpiece = musicpiece.segment_by_bars(int(sys.argv[3]),
                                                int(sys.argv[4]))
        d = preprocess_segments(musicpiece, c)

    if len(sys.argv) == 6:  # midi-file, b00, b01, b10, b11
        b00, b01, b10, b11 = [int(n) for n in sys.argv[2:6]]

        def compare_bars(musicpiece, c, b00, b01, b10, b11):
            one = musicpiece.segment_by_bars(b00, b01)
            two = musicpiece.segment_by_bars(b10, b11)
            features = [one.compare_with(two)]
            similarity_score = c.predict_proba(features)[0][