コード例 #1
0
def parse_args():
    parser = argparse.ArgumentParser(
        description="Train classification models on ImageNet",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    models.add_model_args(parser)
    fit.add_fit_args(parser)
    data.add_data_args(parser)
    dali.add_dali_args(parser)
    data.add_data_aug_args(parser)
    return parser.parse_args()
コード例 #2
0
ファイル: train.py プロジェクト: DeepDoubleB/NNTools
                        default='sgd',
                        help='the optimizer type')
    parser.add_argument('--model-prefix',
                        type=str,
                        default='models/',
                        help='model prefix')
    parser.add_argument('--disp-batches',
                        type=int,
                        default=20,
                        help='show progress for every n batches')
    parser.add_argument('--predict',
                        action='store_true',
                        default=False,
                        help='run prediction instead of training')

    data.add_data_args(parser)
    parser.set_defaults(
        # config
        model_prefix='models/',
        disp_batches=20,
        # data
        data_config='data_ak8_pfcand_reduced_cloud',
        data_train=train_val_fname,
        train_val_split=0.8,
        data_test=test_fname,
        data_example=example_fname,
        data_names=None,
        num_examples=-1,
        # train
        batch_size=1024,
        num_epochs=200,
コード例 #3
0
import argparse

from data import get_data, add_data_args
import torchvision.utils as vutils
import matplotlib.pyplot as plt

###########
## Setup ##
###########

parser = argparse.ArgumentParser()

add_data_args(parser)
parser.add_argument('--num_cols', type=int, default=8)

args = parser.parse_args()

###############
## Load data ##
###############

print('Loading data...')
train_loader = get_data(args)[0]
images = next(iter(train_loader))

###############
## Plot data ##
###############

print('images.shape = {}'.format(images.shape))
print('Plotting data...')