def do_train(args): # Initialize the paddle and paddle fleet execute enviroment paddle.enable_static() place = paddle.set_device(args.select_device) fleet.init(is_collective=True) worker_num = fleet.worker_num() worker_index = fleet.worker_index() # Create the random seed for the worker set_seed(args.seed) worker_init = WorkerInitObj(args.seed + worker_index) # Define the input data in the static mode main_program = paddle.static.default_main_program() startup_program = paddle.static.default_startup_program() data_holders = create_data_holder(args) [ input_ids, segment_ids, input_mask, masked_lm_positions, masked_lm_labels, next_sentence_labels, masked_lm_scale ] = data_holders # Define the model structure in static mode args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) config = model_class.pretrained_init_configuration[args.model_name_or_path] if config["vocab_size"] % 8 != 0: config["vocab_size"] += 8 - (config["vocab_size"] % 8) model = BertForPretraining(BertModel(**config)) criterion = BertPretrainingCriterion(model.bert.config["vocab_size"]) prediction_scores, seq_relationship_score = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, masked_positions=masked_lm_positions) loss = criterion(prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels, masked_lm_scale) # Define the dynamic learing_reate scheduler and optimizer lr_scheduler = paddle.optimizer.lr.LambdaDecay( args.learning_rate, lambda current_step, num_warmup_steps=args.warmup_steps, num_training_steps=args.max_steps if args.max_steps > 0 else (len(train_data_loader) * args.num_train_epochs): float( current_step) / float(max(1, num_warmup_steps)) if current_step < num_warmup_steps else max( 0.0, float(num_training_steps - current_step) / float( max(1, num_training_steps - num_warmup_steps)))) optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ], multi_precision=args.use_pure_fp16) if worker_num == 1 and args.use_amp: custom_black_list = (['lookup_table', 'lookup_table_v2'] if args.use_pure_fp16 else None) amp_list = paddle.static.amp.AutoMixedPrecisionLists( custom_white_list=['softmax', 'layer_norm', 'gelu'], custom_black_list=custom_black_list) optimizer = paddle.static.amp.decorate( optimizer, amp_list, init_loss_scaling=args.scale_loss, use_dynamic_loss_scaling=True, use_pure_fp16=args.use_pure_fp16) if worker_num > 1: # Use the fleet api to compile the distributed optimizer optimizer = dist_optimizer(args, optimizer) optimizer.minimize(loss) # Define the Executor for running the static model exe = paddle.static.Executor(place) exe.run(startup_program) state_dict = model.state_dict() # Use the state dict to update the parameter reset_state_dict = reset_program_state_dict(model, state_dict) paddle.static.set_program_state(main_program, reset_state_dict) if args.use_amp: optimizer.amp_init(place) if worker_num == 1: # Construct the compiled program main_program = build_compiled_program(main_program, loss) pool = ThreadPoolExecutor(1) global_step = 0 tic_train = time.time() epoch = 0 while True: files = [ os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if os.path.isfile(os.path.join(args.input_dir, f)) and "training" in f ] files.sort() num_files = len(files) random.Random(args.seed + epoch).shuffle(files) f_start_id = 0 # Select one file for each worker and create the DataLoader for the file data_file = select_dataset_file_for_each_worker( files, f_start_id, worker_num, worker_index) train_data_loader, _ = create_pretraining_dataset( data_file, args.max_predictions_per_seq, args, data_holders, worker_init, paddle.static.cuda_places()) for f_id in range(f_start_id + 1, len(files)): data_file = select_dataset_file_for_each_worker( files, f_id, worker_num, worker_index) dataset_future = pool.submit(create_pretraining_dataset, data_file, args.max_predictions_per_seq, args, data_holders, worker_init, paddle.static.cuda_places()) train_reader_cost = 0.0 train_run_cost = 0.0 total_samples = 0 reader_start = time.time() for step, batch in enumerate(train_data_loader): train_reader_cost += time.time() - reader_start global_step += 1 train_start = time.time() loss_return = exe.run(main_program, feed=batch, fetch_list=[loss]) train_run_cost += time.time() - train_start total_samples += args.batch_size # In the new 2.0 api, must call this function to change the learning_rate lr_scheduler.step() if global_step % args.logging_steps == 0: print( "tobal step: %d, epoch: %d, batch: %d, loss: %f, " "avg_reader_cost: %.5f sec, avg_batch_cost: %.5f sec, avg_samples: %.5f, ips: %.5f sequences/sec" % (global_step, epoch, step, loss_return[0], train_reader_cost / args.logging_steps, (train_reader_cost + train_run_cost) / args.logging_steps, total_samples / args.logging_steps, total_samples / (train_reader_cost + train_run_cost))) train_reader_cost = 0.0 train_run_cost = 0.0 total_samples = 0 if global_step % args.save_steps == 0: if worker_index == 0: output_dir = os.path.join(args.output_dir, "model_%d" % global_step) if not os.path.exists(output_dir): os.makedirs(output_dir) # TODO(fangzeyang): Udpate the save_params to paddle.static paddle.fluid.io.save_params(exe, output_dir) tokenizer.save_pretrained(output_dir) if global_step >= args.max_steps: reader_start = time.time() del train_data_loader return reader_start = time.time() del train_data_loader train_data_loader, data_file = dataset_future.result(timeout=None) epoch += 1
def do_train(args): # Initialize the paddle execute enviroment paddle.enable_static() place = paddle.set_device(args.select_device) # Set the random seed set_seed(args.seed) # Define the input data in the static mode main_program = paddle.static.default_main_program() startup_program = paddle.static.default_startup_program() data_holders = create_data_holder(args) [ input_ids, segment_ids, input_mask, masked_lm_positions, masked_lm_labels, next_sentence_labels, masked_lm_scale ] = data_holders # Define the model structure in static mode args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) config = model_class.pretrained_init_configuration[args.model_name_or_path] if config["vocab_size"] % 8 != 0: config["vocab_size"] += 8 - (config["vocab_size"] % 8) model = BertForPretraining(BertModel(**config)) criterion = BertPretrainingCriterion(model.bert.config["vocab_size"]) prediction_scores, seq_relationship_score = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, masked_positions=masked_lm_positions) loss = criterion(prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels, masked_lm_scale) # Define the dynamic learing_reate scheduler and optimizer lr_scheduler = paddle.optimizer.lr.LambdaDecay( args.learning_rate, lambda current_step, num_warmup_steps=args.warmup_steps, num_training_steps=args.max_steps if args.max_steps > 0 else (len(train_data_loader) * args.num_train_epochs): float( current_step) / float(max(1, num_warmup_steps)) if current_step < num_warmup_steps else max( 0.0, float(num_training_steps - current_step) / float( max(1, num_training_steps - num_warmup_steps)))) optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ]) if args.use_amp: amp_list = paddle.fluid.contrib.mixed_precision.AutoMixedPrecisionLists( custom_white_list=['layer_norm', 'softmax', 'gelu']) optimizer = paddle.fluid.contrib.mixed_precision.decorate( optimizer, amp_list, init_loss_scaling=args.scale_loss, use_dynamic_loss_scaling=True) optimizer.minimize(loss) # Define the Executor for running the static model exe = paddle.static.Executor(place) exe.run(startup_program) state_dict = model.state_dict() # Use the state dict to update the parameter reset_state_dict = reset_program_state_dict(model, state_dict) paddle.static.set_program_state(main_program, reset_state_dict) # Construct the compiled program main_program = build_compiled_program(args, main_program, loss) global_step = 0 tic_train = time.time() epoch = 0 while True: files = [ os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if os.path.isfile(os.path.join(args.input_dir, f)) and "training" in f ] files.sort() random.Random(args.seed + epoch).shuffle(files) for f_id in range(0, len(files)): train_data_loader, _ = create_pretraining_dataset( files[f_id], args.max_predictions_per_seq, args, data_holders) for step, batch in enumerate(train_data_loader): global_step += 1 loss_return = exe.run(main_program,\ feed=batch, fetch_list=[loss]) # In the new 2.0 api, must call this function to change the learning_rate lr_scheduler.step() if global_step % args.logging_steps == 0: time_cost = time.time() - tic_train print( "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s, ips: %.2f sequences/s" % (global_step, epoch, step, loss_return[0], args.logging_steps / time_cost, args.logging_steps * args.batch_size / time_cost)) tic_train = time.time() if global_step % args.save_steps == 0: output_dir = os.path.join(args.output_dir, "model_%d" % global_step) if not os.path.exists(output_dir): os.makedirs(output_dir) # TODO(fangzeyang): Udpate the save_params to paddle.static paddle.fluid.io.save_params(exe, output_dir) tokenizer.save_pretrained(output_dir) if global_step >= args.max_steps: del train_data_loader return del train_data_loader epoch += 1
def do_train(args): # Initialize the paddle and paddle fleet execute enviroment paddle.enable_static() place = paddle.CUDAPlace(int(os.environ.get('FLAGS_selected_gpus', 0))) fleet.init(is_collective=True) # Create the random seed for the worker set_seed(args.seed) worker_init = WorkerInitObj(args.seed + fleet.worker_index()) # Define the input data in the static mode data_holders = create_data_holder(args) [ input_ids, segment_ids, input_mask, masked_lm_positions, masked_lm_labels, next_sentence_labels, masked_lm_scale ] = data_holders # Define the model structure in static mode args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) model = BertForPretraining( BertModel(**model_class.pretrained_init_configuration[ args.model_name_or_path])) criterion = BertPretrainingCriterion(model.bert.config["vocab_size"]) prediction_scores, seq_relationship_score = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, masked_positions=masked_lm_positions) loss = criterion(prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels, masked_lm_scale) num_training_steps = args.max_steps if args.max_steps > 0 else len( train_data_loader) * args.num_train_epochs # Define the dynamic learing_reate scheduler and optimizer lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps, args.warmup_steps) optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ]) # Use the fleet api to compile the distributed optimizer strategy = fleet.DistributedStrategy() optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy) optimizer.minimize(loss) # Define the Executor for running the static model exe = paddle.static.Executor(place) exe.run(paddle.static.default_startup_program()) state_dict = model.state_dict() # Use the state dict to update the parameter reset_state_dict = reset_program_state_dict(model, state_dict) paddle.static.set_program_state(paddle.static.default_main_program(), reset_state_dict) pool = ThreadPoolExecutor(1) global_step = 0 tic_train = time.time() worker_num = fleet.worker_num() worker_index = fleet.worker_index() epoch = 0 while True: files = [ os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if os.path.isfile(os.path.join(args.input_dir, f)) and "training" in f ] files.sort() num_files = len(files) random.Random(args.seed + epoch).shuffle(files) f_start_id = 0 # Select one file for each worker and create the DataLoader for the file data_file = select_dataset_file_for_each_worker( files, f_start_id, worker_num, worker_index) train_data_loader, _ = create_pretraining_dataset( data_file, args.max_predictions_per_seq, args, data_holders, worker_init, paddle.static.cuda_places()) for f_id in range(f_start_id + 1, len(files)): data_file = select_dataset_file_for_each_worker( files, f_id, worker_num, worker_index) dataset_future = pool.submit(create_pretraining_dataset, data_file, args.max_predictions_per_seq, args, data_holders, worker_init, paddle.static.cuda_places()) for step, batch in enumerate(train_data_loader): global_step += 1 loss_return = exe.run(paddle.static.default_main_program(),\ feed=batch, fetch_list=[loss]) # In the new 2.0 api, must call this function to change the learning_rate lr_scheduler.step() if global_step % args.logging_steps == 0: time_cost = time.time() - tic_train print( "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s, ips :%.2f sequences/s" % (global_step, epoch, step, loss_return[0], args.logging_steps / time_cost, args.logging_steps * args.batch_size / time_cost)) tic_train = time.time() if global_step % args.save_steps == 0: if worker_index == 0: output_dir = os.path.join(args.output_dir, "model_%d" % global_step) if not os.path.exists(output_dir): os.makedirs(output_dir) # TODO(fangzeyang): Udpate the save_params to paddle.static paddle.fluid.io.save_params(exe, output_dir) tokenizer.save_pretrained(output_dir) if global_step >= args.max_steps: del train_data_loader return del train_data_loader train_data_loader, data_file = dataset_future.result(timeout=None) epoch += 1
def do_train(args): # Initialize the paddle and paddle fleet execute enviroment paddle.enable_static() place = paddle.set_device(args.select_device) fleet.init(is_collective=True) # paddle.distributed.init_parallel_env() worker_num = fleet.worker_num() worker_index = fleet.worker_index() # Create the random seed for the worker set_seed(args.seed) # worker_init = WorkerInitObj(args.seed + worker_index) worker_init = WorkerInitObj(args.seed) tracker = get_rng_state_tracker() tracker.add('global_seed', args.seed) tracker.add('local_seed', args.seed + worker_index + 2021) # Define the input data in the static mode main_program = paddle.static.default_main_program() startup_program = paddle.static.default_startup_program() data_holders = create_data_holder(args) [ input_ids, segment_ids, input_mask, masked_lm_positions, masked_lm_labels, next_sentence_labels, masked_lm_scale ] = data_holders # Define the model structure in static mode args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) config = model_class.pretrained_init_configuration[args.model_name_or_path] if config["vocab_size"] % 8 != 0: config["vocab_size"] += 8 - (config["vocab_size"] % 8) config['num_partitions'] = args.num_partitions model = BertForPretraining(BertModel(**config), args.num_partitions) criterion = BertPretrainingCriterion(model.bert.config["vocab_size"]) prediction_scores, seq_relationship_score = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, masked_positions=masked_lm_positions) loss = criterion(prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels, masked_lm_scale) # Define the dynamic learing_reate scheduler and optimizer lr_scheduler = paddle.optimizer.lr.LambdaDecay( args.learning_rate, lambda current_step, num_warmup_steps=args.warmup_steps, num_training_steps=args.max_steps if args.max_steps > 0 else (len(train_data_loader) * args.num_train_epochs): float( current_step) / float(max(1, num_warmup_steps)) if current_step < num_warmup_steps else max( 0.0, float(num_training_steps - current_step) / float( max(1, num_training_steps - num_warmup_steps)))) optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ]) # if worker_num == 1 and args.use_amp: # amp_list = paddle.fluid.contrib.mixed_precision.AutoMixedPrecisionLists( # custom_white_list=['softmax', 'layer_norm', 'gelu']) # optimizer = paddle.fluid.contrib.mixed_precision.decorate( # optimizer, # amp_list, # init_loss_scaling=args.scale_loss, # use_dynamic_loss_scaling=True) if fleet.worker_num() > 1: # Use the fleet api to compile the distributed optimizer optimizer = dist_optimizer(args, optimizer) optimizer.minimize(loss) # Define the Executor for running the static model exe = paddle.static.Executor(place) exe.run(startup_program) # state_dict = model.state_dict() # Use the state dict to update the parameter # reset_state_dict = reset_program_state_dict(model, state_dict) # paddle.static.set_program_state(main_program, reset_state_dict) # if worker_num == 1: # # Construct the compiled program # main_program = build_compiled_program(main_program, loss) main_program._graph = None if fleet.worker_index() == 0: with open('startup_%d' % fleet.worker_num(), 'w') as f: f.writelines(str(startup_program)) with open('main_%d' % fleet.worker_num(), 'w') as f: f.writelines(str(main_program)) pool = ThreadPoolExecutor(1) global_step = 0 tic_train = time.time() epoch = 0 while True: files = [ os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if os.path.isfile(os.path.join(args.input_dir, f)) and "training" in f ] files.sort() num_files = len(files) random.Random(args.seed + epoch).shuffle(files) f_start_id = 0 # Select one file for each worker and create the DataLoader for the file data_file = select_dataset_file_for_each_worker( files, f_start_id, 1, 0) #files, f_start_id, worker_num, worker_index) train_data_loader, _ = create_pretraining_dataset( data_file, args.max_predictions_per_seq, args, data_holders, worker_init, paddle.static.cuda_places()) for f_id in range(f_start_id + 1, len(files)): data_file = select_dataset_file_for_each_worker(files, f_id, 1, 0) # files, f_id, worker_num, worker_index) dataset_future = pool.submit(create_pretraining_dataset, data_file, args.max_predictions_per_seq, args, data_holders, worker_init, paddle.static.cuda_places()) for step, batch in enumerate(train_data_loader): global_step += 1 if step == 10 and worker_index == 0: profiler.start_profiler("All") if step == 20 and worker_index == 0: profiler.stop_profiler("total", "/tmp/profile") loss_return = exe.run(main_program, feed=batch, fetch_list=[loss]) # In the new 2.0 api, must call this function to change the learning_rate lr_scheduler.step() if global_step % args.logging_steps == 0: time_cost = time.time() - tic_train print( "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s, ips: %.2f sequences/s" % (global_step, epoch, step, loss_return[0], args.logging_steps / time_cost, args.logging_steps * args.batch_size / time_cost)) tic_train = time.time() if global_step % args.save_steps == 0: if worker_index == 0: output_dir = os.path.join(args.output_dir, "model_%d" % global_step) if not os.path.exists(output_dir): os.makedirs(output_dir) # TODO(fangzeyang): Udpate the save_params to paddle.static paddle.fluid.io.save_params(exe, output_dir) tokenizer.save_pretrained(output_dir) if global_step >= args.max_steps: del train_data_loader return del train_data_loader train_data_loader, data_file = dataset_future.result(timeout=None) epoch += 1
def do_train(args): # Initialize the paddle execute enviroment paddle.enable_static() place = paddle.set_device(args.device) # Set the random seed set_seed(args.seed) # Define the input data in the static mode main_program = paddle.static.default_main_program() startup_program = paddle.static.default_startup_program() data_holders = create_data_holder(args) [ input_ids, segment_ids, input_mask, masked_lm_positions, masked_lm_labels, next_sentence_labels, masked_lm_scale ] = data_holders # Define the model structure in static mode args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) config = model_class.pretrained_init_configuration[args.model_name_or_path] if config["vocab_size"] % 8 != 0: config["vocab_size"] += 8 - (config["vocab_size"] % 8) model = BertForPretraining(BertModel(**config)) criterion = BertPretrainingCriterion(model.bert.config["vocab_size"]) prediction_scores, seq_relationship_score = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, masked_positions=masked_lm_positions) loss = criterion(prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels, masked_lm_scale) # Define the dynamic learing_reate scheduler and optimizer num_training_steps = args.max_steps if args.max_steps > 0 else len( train_data_loader) * args.num_train_epochs lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps, args.warmup_steps) # Generate parameter names needed to perform weight decay. # All bias and LayerNorm parameters are excluded. decay_params = [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ] optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in decay_params, multi_precision=False) if args.use_amp: custom_black_list = (['lookup_table', 'lookup_table_v2'] if args.use_pure_fp16 else None) amp_list = paddle.static.amp.AutoMixedPrecisionLists( custom_white_list=['layer_norm', 'softmax', 'gelu'], custom_black_list=custom_black_list) optimizer = paddle.static.amp.decorate( optimizer, amp_list, init_loss_scaling=args.scale_loss, use_dynamic_loss_scaling=True, use_pure_fp16=args.use_pure_fp16) optimizer.minimize(loss) # Define the Executor for running the static model exe = paddle.static.Executor(place) exe.run(startup_program) state_dict = model.state_dict() # Use the state dict to update the parameter reset_state_dict = reset_program_state_dict(model, state_dict) paddle.static.set_program_state(main_program, reset_state_dict) if args.use_amp: optimizer.amp_init(place) # Construct the compiled program main_program = build_compiled_program(args, main_program, loss) global_step = 0 tic_train = time.time() epoch = 0 while True: files = [ os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if os.path.isfile(os.path.join(args.input_dir, f)) and "training" in f ] files.sort() random.Random(args.seed + epoch).shuffle(files) for f_id in range(0, len(files)): train_data_loader, _ = create_pretraining_dataset( files[f_id], args.max_predictions_per_seq, args, data_holders) train_reader_cost = 0.0 train_run_cost = 0.0 total_samples = 0 reader_start = time.time() for step, batch in enumerate(train_data_loader): train_reader_cost += time.time() - reader_start global_step += 1 train_start = time.time() loss_return = exe.run(main_program,\ feed=batch, fetch_list=[loss]) train_run_cost += time.time() - train_start total_samples += args.batch_size # In the new 2.0 api, must call this function to change the learning_rate lr_scheduler.step() if global_step % args.logging_steps == 0: print( "global step: %d, epoch: %d, batch: %d, loss: %f, " "avg_reader_cost: %.5f sec, avg_batch_cost: %.5f sec, avg_samples: %.5f, ips: %.5f sequences/sec" % (global_step, epoch, step, loss_return[0], train_reader_cost / args.logging_steps, (train_reader_cost + train_run_cost) / args.logging_steps, total_samples / args.logging_steps, total_samples / (train_reader_cost + train_run_cost))) train_reader_cost = 0.0 train_run_cost = 0.0 total_samples = 0 if global_step % args.save_steps == 0: output_dir = os.path.join(args.output_dir, "model_%d" % global_step) if not os.path.exists(output_dir): os.makedirs(output_dir) # TODO(fangzeyang): Udpate the save_params to paddle.static paddle.fluid.io.save_params(exe, output_dir) tokenizer.save_pretrained(output_dir) if global_step >= args.max_steps: reader_start = time.time() del train_data_loader return reader_start = time.time() del train_data_loader epoch += 1