コード例 #1
0
    t5 = t5.reshape(10)
    return t5


def save_img(img, save_path):
    image_numpy = util.tensor2im(img)
    util.save_image(image_numpy, save_path, create_dir=True)
    return image_numpy


if __name__ == '__main__':


    opt = TestOptions().parse()

    data_info = data.dataset_info()
    datanum = data_info.get_dataset(opt)[0]
    folderlevel = data_info.folder_level[datanum]

    dataloaders = data.create_dataloader_test(opt)

    visualizer = Visualizer(opt)
    iter_counter = IterationCounter(opt, len(dataloaders[0]) * opt.render_thread)
    # create a webpage that summarizes the all results

    testing_queue = Queue(10)

    ngpus = opt.device_count

    render_gpu_ids = list(range(ngpus - opt.render_thread, ngpus))
    render_layer_list = []
コード例 #2
0
import os
import math
import numpy as np
from PIL import Image
import skimage.transform as trans
import cv2
import torch
from data import dataset_info
from data.base_dataset import BaseDataset
import util.util as util

dataset_info = dataset_info()

class AllFaceDataset(BaseDataset):
    @staticmethod
    def modify_commandline_options(parser, is_train):
        parser.add_argument('--no_pairing_check', action='store_true',
                            help='If specified, skip sanity check of correct label-image file pairing')
        return parser

    def cv2_loader(self, img_str):
        img_array = np.frombuffer(img_str, dtype=np.uint8)
        return cv2.imdecode(img_array, cv2.IMREAD_COLOR)

    def fill_list(self, tmp_list):
        length = len(tmp_list)
        if length % self.opt.batchSize != 0:
            end = math.ceil(length / self.opt.batchSize) * self.opt.batchSize
            tmp_list = tmp_list + tmp_list[-1 * (end - length) :]
        return tmp_list