def test(): clf = RandomForest X_train, y_train = data.split(data.train) X_test = data.extract_features(data.test) clf.fit(X_train, y_train) labels = clf.predict(X_test) pd.DataFrame({ "PassengerId": np.array(data.test["PassengerId"]), "Survived": labels }).to_csv("submit.csv", index=False)
def main(): cfg = keys.cfg_keys() tweet_list = guardian.get_guardian_summary(1) sentiment = data.classifier.classify( data.extract_features(tweet_list[0][0].split())) if sentiment == 'negative': icon = emoji.emojize(':neutral_face:') elif sentiment == 'positive': icon = emoji.emojize(':thinking_face:') else: icon = '' api = get_api(cfg) tweet = tweet_list[0][0] + ' ' + icon + ' ' + ' #' + tweet_list[ 1] + ' #' + tweet_list[2] + ' #' + tweet_list[3] status = api.update_status(status=tweet)
def predict(tweet, theta): x = extract_features(tweet) pred = forward(x, theta) return ('Positive' if pred > 0.5 else 'Negative')
taxonomies = {'gillet': gillet, 'super': super_category, 'basic': basic_level, 'sub': sub_category} classifiers = ['knn', 'svm', 'bin_svm', 'bin_knn'] message = """Usage: %s taxonomy classifier features taxonomy: 'gillet', 'super', 'basic', 'sub' classifier: 'knn', 'svm', 'bin_svm' or 'bin_knn' features: 'all', 'reduced', 'auto' (works only with binary classifiers)""" try: _, tax, clf, feature_set = sys.argv taxonomy = taxonomies[tax] if clf not in classifiers: raise Exception except: sys.exit(message % sys.argv[0]) features_, labels_ = extract_features(feature_set) features = [] labels = [] # Convert an instrument label into the corresponding taxonomy category def get_category(label): for category_, labels in taxonomy.iteritems(): if label in labels: return category_ return None # Convert a list of instrument labels into a list of taxonomy categories def get_categories(labels): categories = set([]) for label in labels: category_ = get_category(label) if category_ is None:
} classifiers = ['knn', 'svm', 'bin_svm', 'bin_knn'] message = """Usage: %s taxonomy classifier features taxonomy: 'gillet', 'super', 'basic', 'sub' classifier: 'knn', 'svm', 'bin_svm' or 'bin_knn' features: 'all', 'reduced', 'auto' (works only with binary classifiers)""" try: _, tax, clf, feature_set = sys.argv taxonomy = taxonomies[tax] if clf not in classifiers: raise Exception except: sys.exit(message % sys.argv[0]) features_, labels_ = extract_features(feature_set) features = [] labels = [] # Convert an instrument label into the corresponding taxonomy category def get_category(label): for category_, labels in taxonomy.iteritems(): if label in labels: return category_ return None # Convert a list of instrument labels into a list of taxonomy categories def get_categories(labels): categories = set([])