コード例 #1
0
ファイル: t_main.py プロジェクト: fagan2888/recommend-model
def fundfilter(start_date, end_date):

            
    funddf = data.fund_value(start_date, end_date)
    indexdf = data.index_value(start_date, end_date, '000300.SH')

    #按照规模过滤
    scale_data     = sf.scalefilter(2.0 / 3)    
    
    #按照基金创立时间过滤
    setuptime_data = sf.fundsetuptimefilter(funddf.columns, start_date, data.establish_data())

    #按照jensen测度过滤
    jensen_data    = sf.jensenfilter(funddf, indexdf, rf, 0.5)

    #按照索提诺比率过滤
    sortino_data   = sf.sortinofilter(funddf, rf, 0.5)

    #按照ppw测度过滤
    ppw_data       = sf.ppwfilter(funddf, indexdf, rf, 0.5)
    #print ppw_data

    stability_data = sf.stabilityfilter(funddf, 2.0 / 3)
    #print stability_data

    #print 'jensen'
    jensen_dict = {}
    for k,v in jensen_data:
        jensen_dict[k] = v
        #print k, v

    #print 
    #print 'sortino'            
                
    sortino_dict = {}
    for k,v in sortino_data:
        sortino_dict[k] = v
        #print k,v

    #print 
    #print 'ppw'    
    ppw_dict = {}
    for k,v in ppw_data:
        ppw_dict[k] = v
        #print k,v


    #print 
    #print 'statbility'
    stability_dict = {}
    for k,v in stability_data:
        stability_dict[k] = v
        #print k,v 

        

    '''
    codes = list(jensen_dict.keys())
    codes.sort()


    jensen_array = []
    sortino_array = []
    ppw_array = []
    stability_array = []

    for code in codes:
        jensen_array.append(jensen_dict[code] if jensen_dict.has_key(code) else 0)
        sortino_array.append(sortino_dict[code] if sortino_dict.has_key(code) else 0)
        ppw_array.append(ppw_dict[code] if ppw_dict.has_key(code) else 0)
        stability_array.append(stability_dict[code] if stability_dict.has_key(code) else 0)


    indicators = {'code':codes, 'jensen':jensen_array, 'sortino':sortino_array, 'ppw':ppw_array,'stability':stability_array}    

    frame = pd.DataFrame(indicators)            

    frame.to_csv('./wind/fund_indicator.csv')
    '''


    scale_set = set()
    for k, v in scale_data:
        scale_set.add(k)

    setuptime_set = set(setuptime_data)
                                            
    jensen_set = set()
    for k, v in jensen_data:
        jensen_set.add(k)


    sortino_set = set()
    for k, v in sortino_data:
        sortino_set.add(k)

    ppw_set = set()
    for k, v in ppw_data:
        ppw_set.add(k)


    stability_set = set()
    for k, v in stability_data:
        stability_set.add(k)


    codes = []


    for code in scale_set:
        if (code in setuptime_set) and (code in jensen_set) and (code in sortino_set) and (code in ppw_set) and (code in stability_set):
            codes.append(code)

    #按照业绩持续性过滤
    #stability_data = sf.stabilityfilter(funddf[codes], 2.0 / 3)
    #print stability_data

    #codes = []    
    #for k, v in stability_data:
    #    codes.append(k)    

    return codes
コード例 #2
0
ファイル: stocktag.py プロジェクト: fagan2888/recommend-model
def tagstockfund(start_date, end_date, codes):


    funddf = data.fund_value(start_date, end_date)
    funddf = funddf[codes]


    capindexdf = data.index_value(start_date, end_date, ['399314.SZ', '399316.SZ'])
    largecapindexdf = data.index_value(start_date, end_date, ['399314.SZ'])
    smallcapindexdf = data.index_value(start_date, end_date, ['399316.SZ'])
    hs300indexdf = data.index_value(start_date, end_date, ['000300.SH'])
    growthvalueindexdf = data.index_value(start_date, end_date, ['399372.SZ', '399373.SZ', '399376.SZ', '399377.SZ'])


    positiondf = data.fund_position(start_date, end_date)
    columns = set(positiondf.columns)
    tmp_codes = []
    for code in codes:
        if code in columns:
            tmp_codes.append(code)
    codes = tmp_codes

    positiondf = positiondf[codes]


    largecapfitness_result    = largecapfitness(funddf, capindexdf, 0.5)
    smallcapfitness_result    = smallcapfitness(funddf, capindexdf, 0.5)
    risefitness_result        = risefitness(funddf, hs300indexdf, 0.5)
    declinefitness_result     = declinefitness(funddf, hs300indexdf, 0.5)    
    oscillationfitness_result = oscillationfitness(funddf, hs300indexdf,  0.5)
    growthfitness_result      = growthfitness(funddf, growthvalueindexdf, 0.5)
    valuefitness_result       = valuefitness(funddf,  growthvalueindexdf, 0.5) 
    positionprefer_result     = positionprefer(positiondf, 0.5)
    largecapprefer_result     = largecapprefer(funddf, largecapindexdf, 0.5)
    smallcapprefer_result     = smallcapprefer(funddf, smallcapindexdf, 0.5)
    growthcapprefer_result    = growthcapprefer(funddf, growthvalueindexdf, 0.5)
    valuecapprefer_result     = valuecapprefer(funddf, growthvalueindexdf, 0.5)


    #print 'largecap'
    largecapfitness_set =  set()
    for k,v in largecapfitness_result:
        largecapfitness_set.add(k)
        #print k, v


    #print 
    #print 'smallcap'
    smallcapfitness_set = set()
    for k,v in smallcapfitness_result:
        smallcapfitness_set.add(k)
        #print k, v    


    #print 
    #print 'rise'
    risefitness_set = set()
    for k,v in risefitness_result:
        risefitness_set.add(k)        
        #print k, v

    #print 
    declinefitness_set = set()
    #print 'decline'
    for k,v in declinefitness_result:
        declinefitness_set.add(k)
        #print k, v


    #print 'oscillation'
    oscillation_set = set()
    for k,v in oscillationfitness_result:
        oscillation_set.add(k)
        #print k, v
    #print 


    #print 'growth'
    growthfitness_set = set()    
    for k,v in growthfitness_result:
        growthfitness_set.add(k)
        #print k, v

    #print 
    
    #print 'value'
    valuefitness_set = set()
    for k,v in valuefitness_result:
        valuefitness_set.add(k)
        #print k, v


    #print
    #print 'positionprefer'    
    positionprefer_set = set()
    for k,v in positionprefer_result:
        positionprefer_set.add(k)
        #print k, v


    #print 
    #print 'largecapprefer'    
    largecapprefer_set = set()
    for k, v in largecapprefer_result:
        largecapprefer_set.add(k)
        #print k, v

    #print 
    #print 'smallcapprefer'    
    smallcapprefer_set = set()
    for k, v in smallcapprefer_result:
        smallcapprefer_set.add(k)
        #print k, v
    #print largecapfitness


    #print 
    #print 'grwothcapprefer'
    growthcapprefer_set = set()
    for k, v in growthcapprefer_result:
        growthcapprefer_set.add(k)
        #print k, v    


    #print 
    #print 'valuecapprefer'
    valuecapprefer_set = set()
    for k, v in valuecapprefer_result:
        valuecapprefer_set.add(k)
        #print k, v    



    final_codes = set()    
    #print 
    #print 'rise'
    for code in positionprefer_set:
        if code in risefitness_set:
            #print code
            final_codes.add(code)


    #print 
    #print 'largecap'
    for code in largecapprefer_set:
        if code in largecapfitness_set:
            #print code
            final_codes.add(code)


    #print 
    #print 'smallcap'
    for code in smallcapprefer_set:
        if code in smallcapfitness_set:
            #print code
            final_codes.add(code)    


    #print 
    #print  'growth'
    for code in growthcapprefer_set:
        if code in growthfitness_set:
            #print code
            final_codes.add(code)


    #print
    #print 'value' 
    for code in valuecapprefer_set:
        if code in valuefitness_set:
            #print code
            final_codes.add(code)


    #print 
    #print len(final_codes)
    #print final_codes


    funddf = funddf[list(final_codes)]
    #print 
    #print 'tm'
    #print tmmeasure(funddf, hs300indexdf)    


    #print 
    #print 'hm'
    #print hmmeasure(funddf, hs300indexdf)

    codes = list(final_codes)
    funddf = funddf[codes]
    #funddf = data.fund_value(start_date, end_date)
    #funddf = funddf[codes]

    #funds = set()

    fund_tags = {}
    #print 'large'


    codes = []
    for code in largecapfitness_set:
        if code in final_codes:
            codes.append(code)
    fund_tags['largecap'] = codes


    codes = []
    for code in smallcapfitness_set:
        if code in final_codes:
            codes.append(code)
    fund_tags['smallcap'] = codes


    codes = []
    for code in risefitness_set:
        if code in final_codes:
            codes.append(code)
    fund_tags['risefitness'] = codes

    codes = []
    for code in declinefitness_set:
        if code in final_codes:
            codes.append(code)
    fund_tags['declinefitness'] = codes

    codes = []
    for code in oscillation_set:
        if code in final_codes:
            codes.append(code)
    fund_tags['oscillationfitness'] = codes

    codes = []
    for code in growthfitness_set:
        if code in final_codes:
            codes.append(code)
    fund_tags['growthfitness'] = codes

    codes = []
    for code in valuefitness_set:
        if code in final_codes:
            codes.append(code)
    fund_tags['valuefitness'] = codes


    return list(final_codes) , fund_tags
コード例 #3
0
def stockfundfilter(start_date, end_date):


    indicator = {}

    funddf = data.fund_value(start_date, end_date)
    #print 'hehe'
    #print funddf['000457.OF']
    #print funddf['163001.OF'].to_csv('./tmp/163001.csv')
    indexdf = data.index_value(start_date, end_date, '000300.SH')


    #按照规模过滤
    scale_data     = scalefilter(2.0 / 3)
    #scale_data     = sf.scalefilter(1.0)
    #print scale_data
    #按照基金创立时间过滤


    setuptime_data = fundsetuptimefilter(funddf.columns, start_date, data.establish_data())


    #print setuptime_data
    #按照jensen测度过滤
    jensen_data    = jensenfilter(funddf, indexdf, rf, 0.5)
    #jensen_data    = sf.jensenfilter(funddf, indexdf, rf, 1.0)

    #按照索提诺比率过滤
    sortino_data   = sortinofilter(funddf, rf, 0.5)
    #sortino_data   = sf.sortinofilter(funddf, rf, 1.0)

    #按照ppw测度过滤
    ppw_data       = ppwfilter(funddf, indexdf, rf, 0.5)
    #ppw_data       = sf.ppwfilter(funddf, indexdf, rf, 1.0)
    #print ppw_data

    stability_data = stabilityfilter(funddf, 2.0 / 3)
    #stability_data = sf.stabilityfilter(funddf, 1.0)

    sharpe_data    = fi.fund_sharp_annual(funddf)

    #print stability_data

    #print 'jensen'
    jensen_dict = {}
    for k,v in jensen_data:
        jensen_dict[k] = v
        #print k, v
    #print
    #print 'sortino'


    sortino_dict = {}
    for k,v in sortino_data:
        sortino_dict[k] = v
        #print k,v

    #print
    #print 'ppw'
    ppw_dict = {}
    for k,v in ppw_data:
        ppw_dict[k] = v
        #print k,v

    #print
    #print 'statbility'
    stability_dict = {}
    for k,v in stability_data:
        stability_dict[k] = v
        #print k,v


    sharpe_dict = {}
    for k,v in sharpe_data:
        sharpe_dict[k] = v


    scale_set = set()
    for k, v in scale_data:
        scale_set.add(k)


    setuptime_set = set(setuptime_data)


    jensen_set = set()
    for k, v in jensen_data:
        jensen_set.add(k)


    sortino_set = set()
    for k, v in sortino_data:
        sortino_set.add(k)


    ppw_set = set()
    for k, v in ppw_data:
        ppw_set.add(k)


    stability_set = set()
    for k, v in stability_data:
        stability_set.add(k)

    codes = []

    for code in scale_set:
        if (code in setuptime_set) and (code in jensen_set) and (code in sortino_set) and (code in ppw_set) and (code in stability_set):
            codes.append(code)


    for code in codes:
        ind = indicator.setdefault(code, {})
        ind['sharpe']    = sharpe_dict[code]
        ind['jensen']    = jensen_dict[code]
        ind['sortino']   = sortino_dict[code]
        ind['ppw']         = ppw_dict[code]
        ind['stability'] = stability_dict[code]


    indicator_codes = []
    indicator_datas = []


    indicator_set = set()

    for code in scale_set:
        if code in setuptime_set:
            indicator_set.add(code)


    for code in indicator_set:
        indicator_codes.append(code)
        indicator_datas.append([sharpe_dict.setdefault(code, None), jensen_dict.setdefault(code, None), sortino_dict.setdefault(code, None), ppw_dict.setdefault(code, None), stability_dict.setdefault(code, None)])



    indicator_df = pd.DataFrame(indicator_datas, index = indicator_codes, columns=['sharpe', 'jensen', 'sortino', 'ppw', 'stability'])
    indicator_df.to_csv('./tmp/stock_indicator_' + end_date + '.csv')

    f = open('./tmp/stockfilter_codes_' + end_date + '.csv','w')

    for code in codes:
        f.write(str(code) + '\n')

    f.flush()
    f.close()

    return codes, indicator
コード例 #4
0
ファイル: t_main.py プロジェクト: fagan2888/recommend-model
    #for i in range(0 ,len(train_start_date)):

    for i in range(4 ,5):

        #####################################################
        #训练和评测数据时间
        train_start = train_start_date[i]
        train_end   = train_end_date[i]
        test_start  = test_start_date[i]
        test_end    = test_end_date[i]
        ####################################################


        ###################################################
        #评测数据
        funddf        = data.fund_value(train_start, test_end)
        codes         = funddf.columns
        evaluationdf  = data.fund_value(test_start, test_end)
        evaluationdf  = evaluationdf[codes]        
        ###################################################


        ####################################################################
        #筛选基金池,基金打标签
        codes                  =   fundfilter(train_start, train_end)            
        fund_codes, fund_tags  =   st.tagfunds(train_start, train_end, codes)
        ####################################################################


        #####################################################################################
        #blacklitterman 资产配置
コード例 #5
0
def asset_allocation(start_date, end_date, largecap_fund, smallcap_fund, P, Q):
    #########################################################################

    delta = 2.5
    tau = 0.05

    ps = []
    for p in P:
        ps.append(np.array(p))

    P = np.array(ps)

    qs = []
    for q in Q:
        qs.append(np.array(q))

    Q = np.array(qs)

    indexdf = data.index_value(start_date, end_date,
                               [const.largecap_code, const.smallcap_code])

    indexdfr = indexdf.pct_change().fillna(0.0)

    indexrs = []
    for code in indexdfr.columns:
        indexrs.append(indexdfr[code].values)

    #print indexdfr

    sigma = np.cov(indexrs)

    #print type(sigma)
    #print sigma
    #print np.cov(indexrs)
    #print indexdfr

    weq = np.array([0.5, 0.5])
    tauV = tau * sigma
    Omega = np.dot(np.dot(P, tauV), P.T) * np.eye(Q.shape[0])
    er, ws, lmbda = fin.black_litterman(delta, weq, sigma, tau, P, Q, Omega)

    sum = 0
    for w in ws:
        sum = sum + w
    for i in range(0, len(ws)):
        ws[i] = 1.0 * ws[i] / sum

    #print er
    indexws = ws
    #print indexws
    #largecap_fund, smallcap_fund = largesmallcapfunds(fund_tags)

    #print largecap_fund
    #risk, returns, ws, sharp = markowitz(
    #print smallcap_fund

    funddf = data.fund_value(start_date, end_date)

    bounds = boundlimit(len(largecap_fund))

    risk, returns, ws, sharp = markowitz(funddf[largecap_fund], bounds)

    largecap_fund_w = {}
    for i in range(0, len(largecap_fund)):
        code = largecap_fund[i]
        largecap_fund_w[code] = ws[i] * indexws[0]

    bounds = boundlimit(len(smallcap_fund))
    risk, returns, ws, sharp = markowitz(funddf[smallcap_fund], bounds)

    smallcap_fund_w = {}
    for i in range(0, len(smallcap_fund)):
        code = smallcap_fund[i]
        smallcap_fund_w[code] = ws[i] * indexws[1]
    '''    
    #平均分配            
    largecap_fund_w = {}
    for code in largecap_fund:
        largecap_fund_w[code] = 1.0 / len(largecap_fund) * indexws[0]

    
    smallcap_fund_w = {}
    for code in smallcap_fund:
        smallcap_fund_w[code] = 1.0 / len(smallcap_fund) * indexws[1]
    '''

    fundws = {}
    for code in largecap_fund:
        w = fundws.setdefault(code, 0)
        fundws[code] = w + largecap_fund_w[code]
    for code in smallcap_fund:
        w = fundws.setdefault(code, 0)
        fundws[code] = w + smallcap_fund_w[code]

#######################################################################

#print largecap
#print smallcap
#print risefitness
#print declinefitness
#print oscillafitness
#print growthfitness
#print valuefitness
#print

    fund_codes = []
    ws = []
    for k, v in fundws.items():
        fund_codes.append(k)
        ws.append(v)

    #for code in largecap:

    return fund_codes, ws
コード例 #6
0
def stockLabelAsset(dates, interval, funddf, indexdf):

    df = data.funds()
    dfr = df.pct_change().fillna(0.0)

    funddfr = funddf.pct_change().fillna(0.0)
    indexdfr = indexdf.pct_change().fillna(0.0)

    tag = {}

    result_dates = []
    columns = []
    result_datas = []
    select_datas = []

    allcodes = []
    filtercodes = []
    poolcodes = []
    selectcodes = []

    for i in range(interval + 156, len(dates)):

        if (i - 156) % interval == 0:

            start_date = dates[i - 52].strftime('%Y-%m-%d')
            end_date = dates[i].strftime('%Y-%m-%d')
            allocation_start_date = dates[i - interval].strftime('%Y-%m-%d')

            allocationdf = data.fund_value(allocation_start_date, end_date)
            alldf = data.fund_value(start_date, end_date)

            codes, indicator = FundFilter.stockfundfilter(start_date, end_date)

            fund_pool, fund_tags = st.tagstockfund(start_date, end_date, codes)

            allocationdf = allocationdf[fund_pool]
            fund_code, tag = fund_selector.select_stock(
                allocationdf, fund_tags)

            allcodes = alldf.columns
            filtercodes = codes
            poolcodes = fund_pool
            selectcodes = fund_code

            #print tag['largecap'] , tag['smallcap'], tag['rise'], tag['oscillation'], tag['decline'], tag['growth'], tag['value']

        d = dates[i]
        result_dates.append(d)
        result_datas.append([
            funddfr.loc[d, tag['largecap']], funddfr.loc[d, tag['smallcap']],
            funddfr.loc[d, tag['rise']], funddfr.loc[d, tag['oscillation']],
            funddfr.loc[d, tag['decline']], funddfr.loc[d, tag['growth']],
            funddfr.loc[d, tag['value']]
        ])
        print d.strftime('%Y-%m-%d'), funddfr.loc[
            d, tag['largecap']], funddfr.loc[d, tag['smallcap']], funddfr.loc[
                d,
                tag['rise']], funddfr.loc[d, tag['oscillation']], funddfr.loc[
                    d, tag['decline']], funddfr.loc[
                        d, tag['growth']], funddfr.loc[d, tag['value']]

        allcode_r = 0
        for code in allcodes:
            allcode_r = allcode_r + 1.0 / len(allcodes) * dfr.loc[d, code]

        filtercode_r = 0
        for code in filtercodes:
            filtercode_r = filtercode_r + 1.0 / len(filtercodes) * dfr.loc[
                d, code]

        poolcode_r = 0
        for code in poolcodes:
            poolcode_r = poolcode_r + 1.0 / len(poolcodes) * dfr.loc[d, code]

        selectcode_r = 0
        for code in selectcodes:
            selectcode_r = selectcode_r + 1.0 / len(selectcodes) * dfr.loc[
                d, code]

        select_datas.append(
            [allcode_r, filtercode_r, poolcode_r, selectcode_r])

    result_df = pd.DataFrame(result_datas,
                             index=result_dates,
                             columns=[
                                 'largecap', 'smallcap', 'rise', 'oscillation',
                                 'decline', 'growth', 'value'
                             ])
    result_df.to_csv('./tmp/stocklabelasset.csv')

    select_df = pd.DataFrame(
        select_datas,
        index=result_dates,
        columns=['allcodes', 'filtercodes', 'poolcode', 'selectcode'])
    select_df.to_csv('./tmp/stockselectasset.csv')

    return result_df
コード例 #7
0


#基金的最大回撤
def fund_maxdrawdown(funddf):

    return 0    



if __name__ == '__main__':

    start_date = '2015-04-20'
    end_date   = '2016-04-22'

    funddf     =  data.fund_value(start_date, end_date)
    indexdf = data.index_value(start_date, end_date, '000300.SH')    

    #df = funddf['000398.OF']

    #print np.mean(df.pct_change()) * 52    
    #按照规模过滤
        scale_data     = sf.scalefilter(3.0 / 3)

        #按照基金创立时间过滤
        setuptime_data = sf.fundsetuptimefilter(funddf.columns, start_date, data.establish_data())

        #按照jensen测度过滤
        jensen_data    = sf.jensenfilter(funddf, indexdf, const.rf, 1.0)

        #按照索提诺比率过滤
コード例 #8
0
ファイル: new_main.py プロジェクト: fagan2888/recommend-model
def fundfilter(start_date, end_date):

    indicator = {}

    funddf = data.fund_value(start_date, end_date)
    #print 'hehe'
    #print funddf['000457.OF']
    #print funddf['163001.OF'].to_csv('./tmp/163001.csv')
    indexdf = data.index_value(start_date, end_date, '000300.SH')

    #按照规模过滤
    scale_data     = sf.scalefilter(2.0 / 3)    
    #scale_data     = sf.scalefilter(1.0)    
    #print scale_data
    #按照基金创立时间过滤
    setuptime_data = sf.fundsetuptimefilter(funddf.columns, start_date, data.establish_data())

    #print setuptime_data
    #按照jensen测度过滤
    jensen_data    = sf.jensenfilter(funddf, indexdf, rf, 0.5)
    #jensen_data    = sf.jensenfilter(funddf, indexdf, rf, 1.0)

    #按照索提诺比率过滤
    sortino_data   = sf.sortinofilter(funddf, rf, 0.5)
    #sortino_data   = sf.sortinofilter(funddf, rf, 1.0)

    #按照ppw测度过滤
    ppw_data       = sf.ppwfilter(funddf, indexdf, rf, 0.5)
    #ppw_data       = sf.ppwfilter(funddf, indexdf, rf, 1.0)
    #print ppw_data

    stability_data = sf.stabilityfilter(funddf, 2.0 / 3)
    #stability_data = sf.stabilityfilter(funddf, 1.0)

    sharpe_data    = fi.fund_sharp_annual(funddf)    
    
    #print stability_data

    #print 'jensen'
    jensen_dict = {}
    for k,v in jensen_data:
        jensen_dict[k] = v
        #print k, v
    #print 
    #print 'sortino'            
                
    sortino_dict = {}
    for k,v in sortino_data:
        sortino_dict[k] = v
        #print k,v

    #print 
    #print 'ppw'    
    ppw_dict = {}
    for k,v in ppw_data:
        ppw_dict[k] = v
        #print k,v

    #print 
    #print 'statbility'
    stability_dict = {}
    for k,v in stability_data:
        stability_dict[k] = v
        #print k,v 

    sharpe_dict = {}
    for k,v in sharpe_data:
        sharpe_dict[k] = v

    '''
    codes = list(jensen_dict.keys())
    codes.sort()


    jensen_array = []
    sortino_array = []
    ppw_array = []
    stability_array = []

    for code in codes:
        jensen_array.append(jensen_dict[code] if jensen_dict.has_key(code) else 0)
        sortino_array.append(sortino_dict[code] if sortino_dict.has_key(code) else 0)
        ppw_array.append(ppw_dict[code] if ppw_dict.has_key(code) else 0)
        stability_array.append(stability_dict[code] if stability_dict.has_key(code) else 0)


    indicators = {'code':codes, 'jensen':jensen_array, 'sortino':sortino_array, 'ppw':ppw_array,'stability':stability_array}    

    frame = pd.DataFrame(indicators)            

    frame.to_csv('./wind/fund_indicator.csv')
    '''


    scale_set = set()
    for k, v in scale_data:
        scale_set.add(k)

    setuptime_set = set(setuptime_data)
                                            
    jensen_set = set()
    for k, v in jensen_data:
        jensen_set.add(k)
    


    sortino_set = set()
    for k, v in sortino_data:
        sortino_set.add(k)

    ppw_set = set()
    for k, v in ppw_data:
        ppw_set.add(k)


    stability_set = set()
    for k, v in stability_data:
        stability_set.add(k)

    #print 'jensen', '000457.OF' in jensen_set
    #print 'sortino', '000457.OF' in sortino_set
    #print 'ppw', '000457.OF' in ppw_set
    #print 'stability', '000457.OF' in stability_set

    codes = []

    for code in scale_set:
        if (code in setuptime_set) and (code in jensen_set) and (code in sortino_set) and (code in ppw_set) and (code in stability_set):
            codes.append(code)

    for code in codes:
        ind = indicator.setdefault(code, {})
        ind['sharpe']    = sharpe_dict[code]
        ind['jensen']    = jensen_dict[code]    
        ind['sortino']   = sortino_dict[code]
        ind['ppw']     = ppw_dict[code]
        ind['stability'] = stability_dict[code]


    '''
    indicator_str = "%s,%f,%f,%f,%f,%f\n"
    f = open('./tmp/indicator.csv','w')
    f.write("code,sharpe,jensen,sortino,ppw,stability\n")
    for code in codes:
        f.write(indicator_str % (code, sharpe_dict[code],jensen_dict[code], sortino_dict[code], ppw_dict[code], stability_dict[code]))
        #print code,jensen_dict[code], sortino_dict[code], ppw_dict[code], stability_dict[code]        

    f.flush()    
    f.close()
    '''

    #按照业绩持续性过滤
    #stability_data = sf.stabilityfilter(funddf[codes], 2.0 / 3)
    #print stability_data

    #codes = []    
    #for k, v in stability_data:
    #    codes.append(k)

    return codes, indicator
コード例 #9
0
ファイル: new_main.py プロジェクト: fagan2888/recommend-model
            #change_position_index  = i
            start_date             = dates[i - 52].strftime('%Y-%m-%d')
            allocation_start_date  = dates[i - 13].strftime('%Y-%m-%d')
            end_date               = dates[i].strftime('%Y-%m-%d')
            future_end_date        = dates[-1].strftime('%Y-%m-%d')


            if i + 13 >= len(dates):
                future_end_date = dates[-1].strftime('%Y-%m-%d')
            else:
                future_end_date = dates[i + 13].strftime('%Y-%m-%d')

            codes, indicator       = fundfilter(start_date, end_date)
            fund_pool, fund_tags   = st.tagfunds(start_date, end_date, codes)
            allocation_funddf      = data.fund_value(allocation_start_date, end_date)[fund_pool]
            #allocation_funddfr     = allocation_funddf.pct_change().fillna(0.0)
            fund_codes, tag        = fs.select_fund(allocation_funddf, fund_tags)
            allocation_funddf      = allocation_funddf[fund_codes]


            #fund_codes = list(fund_pool)

            #print fund_pool
            tags = {}
            for key in fund_tags.keys():
                    cs = fund_tags[key]
                    for c in cs:
                            ts = tags.setdefault(c,[])
                            ts.append(key)