def __init__(self, label_file, input_size=224): ''' img_dir: 图片路径:img_dir + img_name.jpg构成图片的完整路径 ''' # 所有图片的绝对路径 with open(label_file, 'r') as f: #label_file的格式, (label_file image_label) self.imgs = list(map(lambda line: line.strip().split(' '), f)) # 相关预处理的初始化 # self.transforms=transform self.img_aug=True self.transform= get_train_transform(size=cfg.INPUT_SIZE) #self.eraser = get_random_eraser( s_h=0.1, pixel_level=True) self.input_size = cfg.INPUT_SIZE
def __init__(self, label_file, imageset): ''' img_dir: 图片路径:img_dir + img_name.jpg构成图片的完整路径 ''' # 所有图片的绝对路径 with open(label_file, 'r') as f: #label_file的格式, (label_file image_label) self.imgs = list(map(lambda line: line.strip().split(' '), f)) # 相关预处理的初始化 # self.transforms=transform self.img_aug=True if imageset == 'train': self.transform= get_train_transform(size=cfg.INPUT_SIZE) else: self.transform = get_test_transform(size = cfg.INPUT_SIZE) self.input_size = cfg.INPUT_SIZE
def __init__(self, label_file, imageset): ''' img_dir: 图片路径:img_dir + img_name.jpg构成图片的完整路径 ''' # 所有图片的绝对路径 label_file = "D:\\05分类图片\\pytorch_classification-master\\data\\train.txt" print(label_file) with open(label_file, 'r') as f: #label_file的格式, (label_file image_label) self.imgs = list(map(lambda line: line.strip().split(' '), f)) # 相关预处理的初始化 # self.transforms=transform self.img_aug=True if imageset == 'train': self.transform= get_train_transform(size=cfg.INPUT_SIZE) else: self.transform = get_test_transform(size = cfg.INPUT_SIZE) self.eraser = get_random_eraser( s_h=0.1, pixel_level=True) self.input_size = cfg.INPUT_SIZE