def get_data(manifest, manifest_root, batch_size, subset_pct, rng_seed): ''' Loads training and validation set using aeon loader args(object): Contains function arguments manifest(list): Manifest files for traning and validaions manifest_root(string): Root directory of manifest file batch_size(int): Mini batch size subset_pct(float): Subset percentage of the data (0-100) rng_seed(int): Seed for random number generator ''' assert 'train' in manifest[1], "Missing train manifest" assert 'test' in manifest[0], "Missing validation manifest" train_set = make_train_loader(manifest[1], manifest_root, batch_size, subset_pct, rng_seed) valid_set = make_validation_loader(manifest[0], manifest_root, batch_size, subset_pct) return train_set, valid_set
parser = NeonArgparser(__doc__, default_config_files=config_files) parser.add_argument('--subset_pct', type=float, default=100, help='subset of training dataset to use (percentage)') args = parser.parse_args() random_seed = 0 if args.rng_seed is None else args.rng_seed model, cost = create_network() # setup data provider assert 'train' in args.manifest, "Missing train manifest" assert 'test' in args.manifest, "Missing validation manifest" train = make_train_loader(args.manifest['train'], args.manifest_root, model.be, args.subset_pct, random_seed) valid = make_test_loader(args.manifest['test'], args.manifest_root, model.be, args.subset_pct) # setup callbacks callbacks = Callbacks(model, eval_set=valid, **args.callback_args) # gradient descent with momentum, weight decay, and learning rate decay schedule learning_rate_sched = Schedule(list(range(6, args.epochs, 6)), 0.1) opt_gdm = GradientDescentMomentum(0.003, 0.9, wdecay=0.005, schedule=learning_rate_sched) opt_biases = GradientDescentMomentum(0.006, 0.9, schedule=learning_rate_sched) opt = MultiOptimizer({'default': opt_gdm, 'Bias': opt_biases})
parser = NeonArgparser(__doc__, default_config_files=config_files) parser.add_argument('--depth', type=int, default=2, help='depth of each stage (network depth will be 9n+2)') parser.add_argument('--subset_pct', type=float, default=100, help='subset of training dataset to use (percentage)') args = parser.parse_args() random_seed = args.rng_seed if args.rng_seed else 0 # Check that the proper manifest sets have been supplied assert 'train' in args.manifest, "Missing train manifest" assert 'val' in args.manifest, "Missing validation manifest" model, cost = create_network(args.depth) # setup data provider train = make_train_loader(args.manifest['train'], args.manifest_root, model.be, args.subset_pct, random_seed) test = make_validation_loader(args.manifest['val'], args.manifest_root, model.be, args.subset_pct) # tune batch norm parameters on subset of train set with no augmentations tune_set = make_tuning_loader(args.manifest['train'], args.manifest_root, model.be) # configure callbacks callbacks = Callbacks(model, eval_set=test, metric=Misclassification(), **args.callback_args) callbacks.add_callback(BatchNormTuneCallback(tune_set), insert_pos=0) # begin training opt = GradientDescentMomentum(0.1, 0.9, wdecay=0.0001, schedule=Schedule([82, 124], 0.1)) model.fit(train, optimizer=opt, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
subm_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'whale_subm.cfg') config_files = [subm_config] if os.path.exists(subm_config) else [] parser = NeonArgparser(__doc__, default_config_files=config_files) parser.add_argument('--submission_file', help='where to write prediction output') args = parser.parse_args() model, cost_obj = create_network() assert 'all' in args.manifest, "Missing train manifest" assert 'test' in args.manifest, "Missing test manifest" assert args.submission_file is not None, "Must supply a submission file to output scores to" neon_logger.display('Performing train and test in submission mode') train = make_train_loader(args.manifest['all'], args.manifest_root, model.be, noise_file=args.manifest.get('noise')) test = make_test_loader(args.manifest['test'], args.manifest_root, model.be) model.fit(dataset=train, cost=cost_obj, optimizer=Adadelta(), num_epochs=args.epochs, callbacks=Callbacks(model, **args.callback_args)) preds = model.get_outputs(test) np.savetxt(args.submission_file, preds[:, 1], fmt='%.5f')
from neon.optimizers import RMSProp from neon.transforms import Misclassification from neon.callbacks.callbacks import Callbacks from network import create_network from data import make_train_loader, make_val_loader eval_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'whale_eval.cfg') config_files = [eval_config] if os.path.exists(eval_config) else [] parser = NeonArgparser(__doc__, default_config_files=config_files) args = parser.parse_args() model, cost_obj = create_network() assert 'train' in args.manifest, "Missing train manifest" assert 'val' in args.manifest, "Missing val manifest" train = make_train_loader(args.manifest['train'], args.manifest_root, model.be, noise_file=args.manifest.get('noise')) neon_logger.display('Performing train and test in validation mode') val = make_val_loader(args.manifest['val'], args.manifest_root, model.be) metric = Misclassification() model.fit(dataset=train, cost=cost_obj, optimizer=RMSProp(learning_rate=1e-4), num_epochs=args.epochs, callbacks=Callbacks(model, eval_set=val, metric=metric, **args.callback_args)) neon_logger.display('Misclassification error = %.1f%%' % (model.eval(val, metric=metric) * 100))