コード例 #1
0
ファイル: test3.py プロジェクト: Michaelsqj/MoNuSAC
 def __init__(self, datafolder, model_save_path):
     super(predict, self).__init__()
     self.batch_size = 1
     self.dataloader = data.provider(data_folder=datafolder, phase='val', input_shape=(256, 256), batch_size=1)
     self.model = model3.HoverNet()
     self.model.load_state_dict(torch.load(model_save_path))
     self.model.eval()
     self.hoverloss = HoverLoss()
     self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
     self.model = self.model.to(self.device)
コード例 #2
0
ファイル: train2.py プロジェクト: Michaelsqj/MoNuSAC
    def __init__(self, model, batch_size: int, max_epoch: int, lr: float,
                 val_freq, model_save_path, data_dir: str, phase: str,
                 input_shape: Tuple[int, int] = (256, 256), checkpoint_path: str = None):
        self.phase = phase
        self.batch_size = batch_size
        self.lr = lr
        self.max_epoch = max_epoch

        # self.val_freq: int = val_freq

        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        self.net = model
        self.net = self.net.to(self.device)
        self.checkpoint_path = checkpoint_path
        self.model_save_path: str = model_save_path

        self.optimizer = torch.optim.Adam(self.net.parameters(),
                                          lr=self.lr)
        # self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, mode="min", patience=3,
        #                                                             verbose=True, min_lr=3e-6)
        self.scheduler = torch.optim.lr_scheduler.StepLR(optimizer=self.optimizer, step_size=10, gamma=1)
        self.hoverloss = loss.HoverLoss()
        self.best_loss: float = float("inf")  # Very high
        self.val_freq = val_freq
        self.dataloaders = {
            'train': data.provider(
                data_folder=data_dir,
                phase='train',
                batch_size=self.batch_size,
                input_shape=input_shape
            ),
            'val': data.provider(
                data_folder=data_dir,
                phase='val',
                batch_size=2,
                input_shape=input_shape
            )
        }

        self.store = {'train': {'loss': [], 'loss_np': [], 'loss_nc': [], 'loss_hv': []},
                      'val': {'loss': [], 'loss_np': [], 'loss_nc': [], 'loss_hv': []}}
        self.epoch_loss = {'loss': [], 'loss_np': [], 'loss_nc': [], 'loss_hv': []}
コード例 #3
0
    def __init__(self, seg_model, cls_model):
        self.num_workers = 6
        self.batch_size = {"val": 1}
        '''##########hyper-paramaters setting#############'''
        self.num_epochs = 1
        self.title = 'local_dice'
        self.sel_GPU = '0'  #set None to select both GPU
        self.fold = FOLD
        self.cls_threshold = [0.5, 0.5, 0.5, 0.5]
        self.min_size = [600, 600, 1000, 2000]
        self.seg_threshold = [0.5, 0.5, 0.5, 0.5]
        '''###############################################'''

        self.criterion = torch.nn.BCEWithLogitsLoss()
        self.accumulation_steps = 32

        #config path of saving pth
        self.path = os.path.join('weights', self.title, 'f' + str(self.fold))
        if not os.path.isdir(self.path):
            os.mkdir(self.path)
            print('make directory done!!')
        self.file_name = os.path.join(self.path, 'logfile.txt')

        self.phases = ["val"]
        #self.device = torch.device("cuda:0")
        #torch.set_default_tensor_type("torch.cuda.FloatTensor")
        self.seg_net = seg_model
        self.cls_net = cls_model

        ##multi GPU
        if self.sel_GPU is not None:
            os.environ['CUDA_VISIBLE_DEVICES'] = self.sel_GPU

        print('Now using: ' + self.title)

        cudnn.benchmark = True
        self.dataloaders = {
            phase: provider(
                data_folder="input/severstal-steel-defect-detection/",
                df_path='input/severstal-steel-defect-detection/train.csv',
                phase=phase,
                fold=self.fold,
                mean=(0.485, 0.456, 0.406),  # (0.39, 0.39, 0.39),
                std=(0.229, 0.224, 0.225),  # (0.17, 0.17, 0.17),
                batch_size=self.batch_size[phase],
                num_workers=self.num_workers,
            )
            for phase in self.phases
        }
        self.losses = {phase: [] for phase in self.phases}
        self.iou_scores = {phase: [] for phase in self.phases}
        self.dice_scores = {phase: [] for phase in self.phases}
コード例 #4
0
    def __init__(self, model):
        self.num_workers = 6
        self.batch_size = {"train": 16, "val": 2}
        self.accumulation_steps = 32 // self.batch_size['train']
        self.base_threshold = 0.5  # <<<<<<<<<<< here's the threshold
        '''##########hyper-paramaters setting#############'''
        self.lr = 5e-4  #default:5e-4
        self.num_epochs = 60
        self.optim = 'RAdam'  #'adam'
        self.learn_plan = 'step'  #step5
        self.loss_function = 'pytorchBCE'  #'pytorchBCE'  'Lovasz'
        self.title = 'unetpsp'
        self.sel_GPU = None  #set None to select both GPU
        self.fold = 0
        '''###############################################'''

        #config path of saving pth
        self.path = os.path.join('weights', self.title, 'f' + str(self.fold))
        if not os.path.isdir(self.path):
            os.mkdir(self.path)
            print('make directory done!!')
        self.file_name = os.path.join(self.path, 'logfile.txt')

        self.best_loss = float("inf")
        self.phases = ["train", "val"]
        #self.device = torch.device("cuda:0")
        #torch.set_default_tensor_type("torch.cuda.FloatTensor")
        self.net = model

        ###resume
        resume = False  #<<<<<<<<<<<<<<<<< TODO: whether resume
        if resume:
            weights = torch.load(
                'weights/3rdclsALL/3rdclsALLRAdamsteppytorchBCE10113.pth',
                map_location=lambda storage, loc: storage)
            self.net.load_state_dict(weights["state_dict"], strict=True)
            print('resuming model done!!!')

        if self.optim == 'adam':
            self.optimizer = torch.optim.Adam(self.net.parameters(),
                                              lr=self.lr)
        elif self.optim == 'SGD':
            self.optimizer = torch.optim.SGD(self.net.parameters(),
                                             lr=self.lr,
                                             momentum=0.9)
        elif self.optim == 'RAdam':
            self.optimizer = RAdam(self.net.parameters(), lr=self.lr)

        if self.learn_plan == 'step':
            self.scheduler = ReduceLROnPlateau(self.optimizer,
                                               mode="min",
                                               patience=3,
                                               verbose=True)

        if self.loss_function == 'pytorchBCE':
            self.criterion = torch.nn.BCEWithLogitsLoss(
            )  #BCELoss()#BCEWithLogitsLoss()
        elif self.loss_function == 'dice_loss':
            self.criterion = dice_loss
        elif self.loss_function == 'weighted_BCE_loss':
            self.criterion = weighted_BCE_loss
        elif self.loss_function == 'binary_focal_loss':
            self.criterion = binary_focal_loss
        elif self.loss_function == 'generalized_dice_loss':
            self.criterion = generalized_dice_loss
        elif self.loss_function == 'mix':
            self.criterion = dice_BCE
        elif self.loss_function == 'change':
            pass

        ##multi GPU
        if self.sel_GPU is not None:
            os.environ['CUDA_VISIBLE_DEVICES'] = self.sel_GPU
        else:
            #self.net, self.optimizer = amp.initialize(self.net.cuda(), self.optimizer, opt_level="O1") #<<<<<<<<<
            os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
            self.net = torch.nn.DataParallel(self.net)
        self.net = self.net.cuda()

        print('Now using: ' + self.title + ' ' + self.optim + ' ' +
              self.learn_plan + ' ' + self.loss_function)
        self.best_val_loss = float('inf')
        self.best_val_dice = -1

        cudnn.benchmark = True
        self.dataloaders = {
            phase: provider(
                data_folder="severstal-256-crop/",
                df_path="severstal-256-crop/crop_256.csv",
                phase=phase,
                fold=self.fold,
                mean=(0.485, 0.456, 0.406),  # (0.39, 0.39, 0.39),
                std=(0.229, 0.224, 0.225),  # (0.17, 0.17, 0.17),
                batch_size=self.batch_size[phase],
                num_workers=self.num_workers,
            )
            for phase in self.phases
        }
        self.losses = {phase: [] for phase in self.phases}
        self.iou_scores = {phase: [] for phase in self.phases}
        self.dice_scores = {phase: [] for phase in self.phases}
コード例 #5
0
    def __init__(self, model):
        self.num_workers = 6
        self.batch_size = {"train": 8, "val": 2}
        self.accumulation_steps = 32 // self.batch_size['train']
        self.base_threshold = 0.5  # <<<<<<<<<<< here's the threshold
        '''##########hyper-paramaters setting#############'''
        self.lr = 5e-4  #default:5e-4
        self.num_epochs = 80
        self.optim = 'RAdam'  #'adam'
        self.learn_plan = 'step'  #step5
        self.loss_function = 'pytorchBCE'  #'pytorchBCE'  'Lovasz'
        self.title = 'seresnet50'
        self.crop256 = True
        '''###############################################'''

        #config path of saving pth
        path = os.path.join('weights', self.title)
        if not os.path.isdir(path):
            os.mkdir(path)
            print('make directory done!!')
        self.file_name = os.path.join(path, 'logfile.txt')

        #config whether to crop
        if self.crop256:
            self.data_folder = "severstal-256-crop/"
            self.df_path = 'severstal-256-crop/crop_256.csv'
        else:
            self.data_folder = "input/severstal-steel-defect-detection/"
            self.df_path = 'input/severstal-steel-defect-detection/train.csv'

        self.best_loss = float("inf")
        self.phases = ["train", "val"]
        #self.device = torch.device("cuda:0")
        #torch.set_default_tensor_type("torch.cuda.FloatTensor")
        self.net = model

        ###resume
        resume = False  #<<<<<<<<<<<<<<<<< TODO: whether resume
        if resume:
            weights = torch.load('weights/model_RAdamsteppytorchBCE9150.pth',
                                 map_location=lambda storage, loc: storage)
            self.net.load_state_dict(weights["state_dict"], strict=True)
            print('resuming model done!!!')

        if self.optim == 'adam':
            self.optimizer = torch.optim.Adam(self.net.parameters(),
                                              lr=self.lr)
        elif self.optim == 'SGD':
            self.optimizer = torch.optim.SGD(self.net.parameters(),
                                             lr=self.lr,
                                             momentum=0.9)
        elif self.optim == 'RAdam':
            self.optimizer = RAdam(self.net.parameters(), lr=self.lr)

        if self.learn_plan == 'step':
            self.scheduler = ReduceLROnPlateau(self.optimizer,
                                               mode="min",
                                               patience=3,
                                               verbose=True)
        elif self.learn_plan == 'SGDR':
            self.scheduler = CosineAnnealingWithRestartsLR(
                self.optimizer, T_max=5)  #set lr=1e-3
            #self.lr = 1e-3

        if self.loss_function == 'pytorchBCE':
            self.criterion = torch.nn.BCEWithLogitsLoss(
            )  #BCELoss()#BCEWithLogitsLoss()
        elif self.loss_function == 'dice_loss':
            self.criterion = dice_loss
        elif self.loss_function == 'weighted_BCE_loss':
            self.criterion = weighted_BCE_loss
        elif self.loss_function == 'binary_focal_loss':
            self.criterion = binary_focal_loss
        elif self.loss_function == 'generalized_dice_loss':
            self.criterion = generalized_dice_loss
        elif self.loss_function == 'Lovasz':
            from lovasz_loss import LovaszSoftmax
            self.criterion = LovaszSoftmax()
        elif self.loss_function == 'mix':
            self.criterion = dice_BCE
        elif self.loss_function == 'change':
            pass

        ##multi GPU
        self.mGPU_apex = True  #<<<<<<<<<<<<<<<<<<<TODO: set mGPU here
        if self.mGPU_apex:
            #self.net, self.optimizer = amp.initialize(self.net.cuda(), self.optimizer, opt_level="O1") #<<<<<<<<<
            self.net = torch.nn.DataParallel(self.net)
        self.net = self.net.cuda()

        print('Now using: ' + self.optim + ' ' + self.learn_plan + ' ' +
              self.loss_function)
        self.best_val_loss = float('inf')
        self.best_val_dice = -1

        cudnn.benchmark = True
        self.dataloaders = {
            phase: provider(
                data_folder=self.data_folder,
                df_path=self.df_path,
                phase=phase,
                mean=(0.485, 0.456, 0.406),  # (0.39, 0.39, 0.39),
                std=(0.229, 0.224, 0.225),  # (0.17, 0.17, 0.17),
                batch_size=self.batch_size[phase],
                num_workers=self.num_workers,
            )
            for phase in self.phases
        }
        self.losses = {phase: [] for phase in self.phases}
        self.iou_scores = {phase: [] for phase in self.phases}
        self.dice_scores = {phase: [] for phase in self.phases}
コード例 #6
0
    def __init__(self, model):
        self.num_workers = 6
        self.batch_size = {"train": 8, "val": 1}
        self.accumulation_steps = 32 // self.batch_size['train']
        self.base_threshold = 0.5  # <<<<<<<<<<< here's the threshold
        self.net = model
        '''##########hyper-paramaters setting#############'''
        self.lr = 5e-4  #default:5e-4
        self.num_epochs = 80
        self.optim = 'RAdam'  #'adam'
        self.learn_plan = 'step'  #step5
        self.loss_function = 'pytorchBCE'  #'pytorchBCE'  'Lovasz'
        self.title = 'res34cv'
        self.sel_GPU = '1'  #set None to select both GPU
        self.fold = 4
        '''###############################################'''

        # config path of saving pth
        self.path = os.path.join('weights', self.title, 'f' + str(self.fold))
        if not os.path.isdir(self.path):
            os.mkdir(self.path)
            print('make directory done!!')
        self.file_name = os.path.join(self.path, 'logfile.txt')

        self.data_folder = "input/severstal-steel-defect-detection/"
        self.df_path = 'input/severstal-steel-defect-detection/train.csv'

        self.phases = ["train", "val"]
        self.best_val_loss = float('inf')
        self.best_val_macc = -1
        self.losses = {phase: [] for phase in self.phases}
        self.acc_total = {phase: [] for phase in self.phases}

        ###resume
        resume = False  #<<<<<<<<<<<<<<<<< TODO: whether resume
        if resume:
            weights = torch.load('weights/00007500_model.pth',
                                 map_location=lambda storage, loc: storage)
            self.net.load_state_dict(weights, strict=True)  #["state_dict"]
            print('resuming model done!!!')

        if self.optim == 'adam':
            self.optimizer = torch.optim.Adam(self.net.parameters(),
                                              lr=self.lr)
        elif self.optim == 'SGD':
            self.optimizer = torch.optim.SGD(self.net.parameters(),
                                             lr=self.lr,
                                             momentum=0.9)
        elif self.optim == 'RAdam':
            self.optimizer = RAdam(self.net.parameters(), lr=self.lr)

        if self.learn_plan == 'step':
            self.scheduler = ReduceLROnPlateau(self.optimizer,
                                               mode="min",
                                               patience=3,
                                               verbose=True)

        if self.loss_function == 'pytorchBCE':
            self.criterion = torch.nn.BCEWithLogitsLoss(
            )  #BCELoss()#BCEWithLogitsLoss()
        elif self.loss_function == 'weighted_BCE':
            self.criterion = weighted_BCE

        print('Now using: ' + self.optim + ' ' + self.learn_plan + ' ' +
              self.loss_function)

        ##multi GPU
        if self.sel_GPU is not None:
            os.environ['CUDA_VISIBLE_DEVICES'] = self.sel_GPU
        else:
            #self.net, self.optimizer = amp.initialize(self.net.cuda(), self.optimizer, opt_level="O1") #<<<<<<<<<
            os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
            self.net = torch.nn.DataParallel(self.net)
        self.net = self.net.cuda()

        cudnn.benchmark = True
        self.dataloaders = {
            phase: provider(
                data_folder=self.data_folder,
                df_path=self.df_path,
                phase=phase,
                fold=self.fold,
                mean=(0.485, 0.456, 0.406),  # (0.39, 0.39, 0.39),
                std=(0.229, 0.224, 0.225),  # (0.17, 0.17, 0.17),
                batch_size=self.batch_size[phase],
                num_workers=self.num_workers,
            )
            for phase in self.phases
        }