コード例 #1
0
ファイル: test.py プロジェクト: youngminpark2559/barrista
def test_image(
        result_folder,
        epoch=None,
        image_idx=0,
        use_cpu=False):
    """Test a network on one test image."""
    if use_cpu:
        bnet.set_mode_cpu()
    else:
        bnet.set_mode_gpu()
    _LOGGER.info("Loading data...")
    tr_data, _ = training_data()
    te_data, _ = test_data()
    from data import _MEAN
    _LOGGER.info("Loading network...")
    # Load the model for training.
    model, _, _, _ = _model(result_folder,
                            tr_data.shape[0],
                            epoch=epoch)
    _LOGGER.info("Predicting...")
    results = model.predict(te_data[:image_idx + 1],
                            test_callbacks=[
                                RandCropMonitor('data', _MEAN),
                                mnt.ProgressIndicator()
                            ],
                            out_blob_names=['score'])
    _LOGGER.info("Prediction for image %d: %s.",
                 image_idx, str(results[image_idx]))
コード例 #2
0
ファイル: test.py プロジェクト: youngminpark2559/barrista
def score(
        result_folder,
        epoch=None,
        use_cpu=False):
    """Test a network on the dataset."""
    if use_cpu:
        bnet.set_mode_cpu()
    else:
        bnet.set_mode_gpu()
    _LOGGER.info("Loading data...")
    tr_data, _ = training_data()
    te_data, te_labels = test_data()
    from data import _MEAN
    _LOGGER.info("Loading network...")
    # Load the model.
    model, _, _, _ = _model(result_folder,
                            tr_data.shape[0],
                            epoch=epoch,
                            no_solver=True)
    _LOGGER.info("Predicting...")
    results = model.predict(te_data,
                            test_callbacks=[
                                RandCropMonitor('data', _MEAN),
                                mnt.ProgressIndicator()
                            ],
                            out_blob_names=['score'])
    _LOGGER.info("Accuracy: %f.",
                 accuracy_score(te_labels,
                                np.argmax(np.array(results), axis=1)))
コード例 #3
0
ファイル: test.py プロジェクト: taopanpan/thyroid-us
def predict():
    weights_path = os.path.join(checkpoints_dir, "weights.h5")

    net = load_model(weights_path,
                     custom_objects={"focal_loss_fixed": focal_loss()})

    X_test, y_test = test_data()

    preds = net.predict(X_test, batch_size=batch_size, verbose=1)

    return preds[0], y_test[0]
コード例 #4
0
ファイル: train.py プロジェクト: taopanpan/thyroid-us
def train():
    if not os.path.exists(checkpoints_dir):
        os.makedirs(checkpoints_dir)
    if not os.path.exists(logs_dir):
        os.makedirs(logs_dir)

    X_train, y_train = train_data()
    X_test, y_test = test_data()

    print("Training and validation data processed.")

    model = multitask_cnn()

    optimizer = RMSprop(lr=base_lr)
    model.compile(
        optimizer=optimizer,
        loss=loss_dict,
        loss_weights=loss_weights_dict,
        metrics=["accuracy"],
    )

    training_log = TensorBoard(log_dir=os.path.join(logs_dir, "log"),
                               write_graph=False)

    callbacks = [training_log]

    for e in range(epochs):
        X_train_augmented = augment(X_train)
        model.fit(
            {"thyroid_input": X_train_augmented},
            y_train,
            validation_data=(X_test, y_test),
            batch_size=batch_size,
            epochs=e + 1,
            initial_epoch=e,
            shuffle=True,
            callbacks=callbacks,
        )

        if np.mod(e + 1, 10) == 0:
            y_pred = model.predict(X_train, batch_size=batch_size, verbose=1)
            auc_train = roc_auc_score(y_train["out_cancer"], y_pred[0])
            y_pred = model.predict(X_test, batch_size=batch_size, verbose=1)
            auc_test = roc_auc_score(y_test[0], y_pred[0])
            with open(os.path.join(logs_dir, "auc.txt"), "a") as auc_file:
                auc_file.write("{},{}\n".format(auc_train, auc_test))

    model.save(os.path.join(checkpoints_dir, "weights.h5"))

    print("Training completed.")
コード例 #5
0
ファイル: testing.py プロジェクト: ajmal017/portfolio-3
def test_unit(T=100):
    X = data.test_data(T)

    bh_reward = algo.hindsight(X)
    x_oga, oga_rewards = algo.oga(X)
    x_ons, ons_rewards = algo.ons(X)

    print("final x_oga = ", x_oga)
    print("final x_ons = ", x_ons)
    print("should be", 0.5 * np.ones([2, 1]))

    algs_reward = [[np.cumsum(oga_rewards), "oga"],
                   [np.cumsum(ons_rewards), "ons"]]
    plot.plot_regret(bh_rewards, algs_rewards)
コード例 #6
0
def test_image(result_folder, epoch=None, image_idx=0, use_cpu=False):
    """Test a network on one test image."""
    if use_cpu:
        bnet.set_mode_cpu()
    else:
        bnet.set_mode_gpu()
    _LOGGER.info("Loading data...")
    tr_data, _ = training_data()
    te_data, _ = test_data()
    _LOGGER.info("Loading network...")
    # Load the model for training.
    model, _, _, _ = _model(result_folder, tr_data.shape[0], epoch=epoch)
    _LOGGER.info("Predicting...")
    results = model.predict(te_data, test_callbacks=[mnt.ProgressIndicator()])
    _LOGGER.info("Prediction for image %d: %s.", image_idx,
                 str(results[image_idx]))
コード例 #7
0
ファイル: test.py プロジェクト: classner/barrista
def test_image(
        result_folder,
        epoch=None,
        image_idx=0,
        use_cpu=False):
    """Test a network on one test image."""
    if use_cpu:
        bnet.set_mode_cpu()
    else:
        bnet.set_mode_gpu()
    _LOGGER.info("Loading data...")
    tr_data, _ = training_data()
    te_data, _ = test_data()
    _LOGGER.info("Loading network...")
    # Load the model for training.
    model, _, _, _ = _model(result_folder,
                            tr_data.shape[0],
                            epoch=epoch)
    _LOGGER.info("Predicting...")
    results = model.predict(te_data,
                            test_callbacks=[mnt.ProgressIndicator()])
    _LOGGER.info("Prediction for image %d: %s.",
                 image_idx, str(results[image_idx]))
コード例 #8
0
ファイル: train.py プロジェクト: youngminpark2559/barrista
def cli(result_folder,
        model_name=None,
        epoch=None,
        num_epoch=150,
        optimizer_name='sgd',
        lr_param=0.1,
        lr_decay_sched='90,135',
        lr_decay_ratio=0.1,
        mom_param=0.9,
        wd_param=0.0001,
        monitor=False,
        allow_overwrite=False,
        use_cpu=False):
    """Train a model."""
    print("Parameters: ", sys.argv)
    if use_cpu:
        bnet.set_mode_cpu()
    else:
        bnet.set_mode_gpu()
    # Load the data.
    tr_data, tr_labels = training_data()
    te_data, te_labels = test_data()
    from data import _MEAN
    # Setup the output folder, including logging.
    model, optimizer, out_folder, base_iter = _model(
        result_folder, tr_data.shape[0], model_name, epoch, 10, optimizer_name,
        lr_param, lr_decay_sched, lr_decay_ratio, mom_param, wd_param, False,
        allow_overwrite)
    batch_size = model.blobs['data'].shape[0]
    logger = mnt.JSONLogger(str(out_folder),
                            'model', {
                                'train': ['train_loss', 'train_accuracy'],
                                'test': ['test_loss', 'test_accuracy']
                            },
                            base_iter=base_iter,
                            write_every=round_to_mbsize(10000, batch_size),
                            create_plot=monitor)
    progr_ind = mnt.ProgressIndicator()
    cropper = RandCropMonitor('data', _MEAN)
    if monitor:
        extra_monitors = [
            mnt.ActivationMonitor(round_to_mbsize(10000, batch_size),
                                  os.path.join(str(out_folder),
                                               'visualizations' + os.sep),
                                  selected_blobs=['resblock3_out', 'avpool'],
                                  sample={'data': tr_data[0]}),
            mnt.FilterMonitor(round_to_mbsize(10000, batch_size),
                              os.path.join(str(out_folder),
                                           'visualizations' + os.sep),
                              selected_parameters={
                                  'resblock1_conv1': [0],
                                  'resblock3_conv1': [0],
                                  'resblock7_conv1': [0]
                              }),
            mnt.GradientMonitor(round_to_mbsize(10000, batch_size),
                                os.path.join(str(out_folder),
                                             'visualizations' + os.sep),
                                relative=True,
                                selected_parameters={
                                    'resblock1_conv1': [0, 1],
                                    'resblock3_conv1': [0, 1],
                                    'resblock7_conv1': [0, 1]
                                }),
        ]
    else:
        extra_monitors = []
    model.fit(round_to_mbsize(num_epoch * 50000, batch_size),
              optimizer,
              X={
                  'data': tr_data,
                  'labels': tr_labels
              },
              X_val={
                  'data': te_data,
                  'labels': te_labels
              },
              test_interval=round_to_mbsize(50000, batch_size),
              train_callbacks=[
                  progr_ind,
                  logger,
                  mnt.RotatingMirroringMonitor({'data': 0}, 0, 0.5),
                  cropper,
                  mnt.Checkpointer(os.path.join(str(out_folder), 'model'),
                                   round_to_mbsize(50000 * 10, batch_size),
                                   base_iterations=base_iter),
              ] + extra_monitors,
              test_callbacks=[progr_ind, cropper, logger],
              shuffle=True)
コード例 #9
0
model_save_path = r'model_weights.h5'
# Loading Data
X, y = data_load(ip_data_path, op_data_path)

# Reduce y to 8th order
y = y[:,:45]

print('Data Loaded ... \n')

res_model = build_nn_resnet()

print('Network Constructed ... \n')
print('Training Network ... \n')

res_model = train_network(res_model, X, y, num_epoch=400, batch=1000, save_path=model_save_path)

print('Making Predictions and Saving file')

#save_file_path = r'D:\Users\Vishwesh\PycharmProjects\Deep_PNAS\Model_Results_2019\seq_resnet_v2.mat'
save_file_path = r'test_resnet_v2.mat'
test_data(res_model, test_data_path, save_file_path)








コード例 #10
0
def main():

    # tolerance in the computation
    tol = 1e-10

    # assign the flag for the low permeable fractures
    mesh_size = 0.5*1e-2
    tol_network = mesh_size
    mesh_kwargs = {"mesh_size_frac": mesh_size, "mesh_size_min": mesh_size / 20}

    # read and mark the original fracture network, the fractures id will be preserved
    file_name = "network.csv"
    domain = {"xmin": 0, "xmax": 1, "ymin": -1, "ymax": 1}
    network = pp.fracture_importer.network_2d_from_csv(file_name, domain=domain)
    # set the original id
    network.tags["original_id"] = np.arange(network.num_frac, dtype=np.int)
    # save the original network
    network_original = network.copy()

    # set the condition, meaning if for a branch we solve problem with a < (1) or with > (0)
    # for simplicity we just set all equal
    network.tags["condition"] = np.ones(network.num_frac, dtype=np.int)

    flux_threshold = 0.15
    cond = lambda flux, op, tol=0: condition_interface(flux_threshold, flux, op, tol)

    file_name = "case2"
    folder_name = "./linear/"
    variable_to_export = [Flow.pressure, Flow.P0_flux, "original_id", "condition"]

    iteration = 0
    max_iteration = 1e3
    okay = False
    while not okay:

        print("iteration", iteration)

        # create the grid bucket
        gb = network.mesh(mesh_kwargs, dfn=True, preserve_fracture_tags=["original_id", "condition"])

        # create the discretization
        discr = Flow(gb)
        discr.set_data(test_data())

        # problem solution
        A, b = discr.matrix_rhs()
        x = sps.linalg.spsolve(A, b)
        discr.extract(x)

        # exporter
        save = pp.Exporter(gb, "sol_" + file_name, folder_name=folder_name)
        save.write_vtu(variable_to_export, time_step=iteration)

        # save the network points to check if we have reached convergence
        old_network_pts = network.pts

        # construct the new network such that the interfaces are respected
        network = detect_interface(gb, network, network_original, discr, cond, tol)
        # export the current network with the associated tags
        network_file_name = make_file_name(file_name, iteration)
        network.to_file(network_file_name, data=network.tags, folder_name=folder_name, binary=False)

        # check if any point in the network has changed
        all_pts = np.hstack((old_network_pts, network.pts))
        distances = pp.distances.pointset(all_pts) > tol_network
        # consider only the block between the old and new points
        distances = distances[:old_network_pts.shape[1], -network.pts.shape[1]:]
        # check if an old point has a point equal in the new set
        check = np.any(np.logical_not(distances), axis=0)

        if np.all(check) or iteration > max_iteration:
            okay = True
        iteration += 1

    save.write_pvd(np.arange(iteration), np.arange(iteration))
    write_network_pvd(file_name, folder_name, np.arange(iteration))
コード例 #11
0
import models
from data import gen, test_data
import matplotlib.pyplot as plt

shape = (256, 256)

# Load model
print('\n')
print('-' * 30)
print('Loading model...')
print('-' * 30)
model = models.unet(shape, models.res_block_basic, models.Activation('relu'),
                    0, False)
#model = models.get_unet(shape)
#model = models.test_net(shape)
model.load_weights('./weights/weights.hdf5')

# Look at sample predictions
print('\n')
print('-' * 30)
print('Sample predictions...')
print('-' * 30)
Xt = test_data(shape)
Yt = model.predict(Xt, verbose=1)

for i in range(Xt.shape[0]):
    plt.subplot(1, 2, 1)
    plt.imshow(Xt[i, 0, :, :])
    plt.subplot(1, 2, 2)
    plt.imshow(Yt[i, 0, :, :])
    plt.show()
コード例 #12
0
ファイル: train.py プロジェクト: classner/barrista
def cli(result_folder,
        model_name=None,
        epoch=None,
        num_epoch=3,
        optimizer_name='sgd',
        lr_param=0.001,
        lr_decay_sched='90,135',
        lr_decay_ratio=0.1,
        mom_param=0.9,
        wd_param=0.0001,
        monitor=False,
        allow_overwrite=False,
        use_cpu=False):
    """Train a model."""
    print("Parameters: ", sys.argv)
    if use_cpu:
        bnet.set_mode_cpu()
    else:
        bnet.set_mode_gpu()
    # Load the data.
    tr_data, tr_labels = training_data()
    te_data, te_labels = test_data()
    # Setup the output folder, including logging.
    model, optimizer, out_folder, base_iter = _model(
        result_folder,
        tr_data.shape[0],
        model_name,
        epoch,
        1,
        optimizer_name,
        lr_param,
        lr_decay_sched,
        lr_decay_ratio,
        mom_param,
        wd_param,
        False,
        allow_overwrite)
    batch_size = model.blobs['data'].shape[0]
    logger = mnt.JSONLogger(str(out_folder),
                            'model',
                            {'train': ['train_loss', 'train_accuracy'],
                             'test': ['test_loss', 'test_accuracy']},
                            base_iter=base_iter,
                            write_every=round_to_mbsize(50000, batch_size),
                            create_plot=monitor)
    progr_ind = mnt.ProgressIndicator()

    if monitor:
        extra_monitors = [
            mnt.ActivationMonitor(round_to_mbsize(10000, batch_size),
                                  os.path.join(str(out_folder),
                                               'visualizations' + os.sep),
                                  sample={'data': tr_data[0]}),
            mnt.FilterMonitor(round_to_mbsize(10000, batch_size),
                              os.path.join(str(out_folder),
                                           'visualizations' + os.sep)),
            mnt.GradientMonitor(round_to_mbsize(10000, batch_size),
                                os.path.join(str(out_folder),
                                             'visualizations' + os.sep),
                                relative=True),
        ]
    else:
        extra_monitors = []
    model.fit(round_to_mbsize(num_epoch * tr_data.shape[0], batch_size),
              optimizer,
              X={'data': tr_data, 'labels': tr_labels},
              X_val={'data': te_data, 'labels': te_labels},
              test_interval=round_to_mbsize(tr_data.shape[0], batch_size),
              train_callbacks=[
                  progr_ind,
                  logger,
                  mnt.Checkpointer(os.path.join(str(out_folder),
                                                'model'),
                                   round_to_mbsize(tr_data.shape[0], batch_size),
                                   base_iterations=base_iter),
                  ] + extra_monitors,
              test_callbacks=[
                  progr_ind,
                  logger])
コード例 #13
0
ファイル: train.py プロジェクト: classner/barrista
def cli(
    result_folder,
    model_name=None,
    epoch=None,
    num_epoch=150,
    optimizer_name="sgd",
    lr_param=0.1,
    lr_decay_sched="90,135",
    lr_decay_ratio=0.1,
    mom_param=0.9,
    wd_param=0.0001,
    monitor=False,
    allow_overwrite=False,
    use_cpu=False,
):
    """Train a model."""
    print("Parameters: ", sys.argv)
    if use_cpu:
        bnet.set_mode_cpu()
    else:
        bnet.set_mode_gpu()
    # Load the data.
    tr_data, tr_labels = training_data()
    te_data, te_labels = test_data()
    from data import _MEAN

    # Setup the output folder, including logging.
    model, optimizer, out_folder, base_iter = _model(
        result_folder,
        tr_data.shape[0],
        model_name,
        epoch,
        10,
        optimizer_name,
        lr_param,
        lr_decay_sched,
        lr_decay_ratio,
        mom_param,
        wd_param,
        False,
        allow_overwrite,
    )
    batch_size = model.blobs["data"].shape[0]
    logger = mnt.JSONLogger(
        str(out_folder),
        "model",
        {"train": ["train_loss", "train_accuracy"], "test": ["test_loss", "test_accuracy"]},
        base_iter=base_iter,
        write_every=round_to_mbsize(10000, batch_size),
        create_plot=monitor,
    )
    progr_ind = mnt.ProgressIndicator()
    cropper = RandCropMonitor("data", _MEAN)
    if monitor:
        extra_monitors = [
            mnt.ActivationMonitor(
                round_to_mbsize(10000, batch_size),
                os.path.join(str(out_folder), "visualizations" + os.sep),
                selected_blobs=["resblock3_out", "avpool"],
                sample={"data": tr_data[0]},
            ),
            mnt.FilterMonitor(
                round_to_mbsize(10000, batch_size),
                os.path.join(str(out_folder), "visualizations" + os.sep),
                selected_parameters={"resblock1_conv1": [0], "resblock3_conv1": [0], "resblock7_conv1": [0]},
            ),
            mnt.GradientMonitor(
                round_to_mbsize(10000, batch_size),
                os.path.join(str(out_folder), "visualizations" + os.sep),
                relative=True,
                selected_parameters={"resblock1_conv1": [0, 1], "resblock3_conv1": [0, 1], "resblock7_conv1": [0, 1]},
            ),
        ]
    else:
        extra_monitors = []
    model.fit(
        round_to_mbsize(num_epoch * 50000, batch_size),
        optimizer,
        X={"data": tr_data, "labels": tr_labels},
        X_val={"data": te_data, "labels": te_labels},
        test_interval=round_to_mbsize(50000, batch_size),
        train_callbacks=[
            progr_ind,
            logger,
            mnt.RotatingMirroringMonitor({"data": 0}, 0, 0.5),
            cropper,
            mnt.Checkpointer(
                os.path.join(str(out_folder), "model"),
                round_to_mbsize(50000 * 10, batch_size),
                base_iterations=base_iter,
            ),
        ]
        + extra_monitors,
        test_callbacks=[progr_ind, cropper, logger],
        shuffle=True,
    )
コード例 #14
0
import data
import assign
import itertools
import numpy as np

colleges, students = data.test_data(others=60)

NDIM = 3

result = np.zeros((len(colleges),)*NDIM + (NDIM,))

for choices in itertools.product(np.arange(len(colleges)), repeat=NDIM):
    students.choice[:NDIM] = choices

    print "C:", choices

    probs = assign.prob_outcomes(colleges, students, sigma_i=0.2)

    print "Results:"
    print
    for ci, college in enumerate(colleges):
        print "{0.name} (T={0.threshold:.2f}, C={0.capacity})".format(college)
        for si, (student, p) in enumerate(zip(students[:NDIM], probs)):
            if student.choice != ci: continue
            print "  {0.name} (G={0.grade:.2f}):".format(student)
            for outcome in data.Outcome:
                print "    {:>8s}:{: 6.1f}".format(outcome.name, 100*p[outcome])
        print


    prob_c = assign.prob_colleges(colleges, students, probs)