コード例 #1
0
def predict_config(weights, train_config, pred_config, path=None, out_prefix=None):
    model = tsn(train_config['model_params']['base_model'],
                train_config['model_params']['tsn_model'])

    if path is not None:
        pred_config['data_params']['in_csv_infer'] = path

    if out_prefix is not None:
        pred_config['args']['out_prefix'] = out_prefix

    datasource = DataSource()
    loaders = datasource.prepare_loaders(
        mode="infer",
        n_workers=pred_config['args']['workers'],
        batch_size=pred_config['args']['batch_size'],
        **pred_config['data_params']
    )

    runner = ModelRunner(model)
    callbacks = runner.prepare_callbacks(
            mode="infer",
            resume=weights,
            out_prefix=pred_config['args']['out_prefix'],
            **pred_config['callbacks_params']
        )
    runner.infer(loaders=loaders, callbacks=callbacks, verbose=True)
コード例 #2
0
    def load_data(self, region, N, limit=0):
        DS = DataSource()
        db = DS.IPdatabase()
        maxlimit = db[region].count()
        if (limit <= 0) or (limit > maxlimit):
            limit = maxlimit

        cursor = db[region].aggregate([
            {
                '$sort': {
                    'date': 1
                }
            },
            {
                '$limit': limit
            },
            {
                '$project': {
                    #'address': { '$concat': [{'$toString': '$b1'},'.',{'$toString': '$b2'},'.',{'$toString': '$b3'},'.',{'$toString': '$b4'}] }
                    'address': {
                        '$concat': [{
                            '$toString': '$b1'
                        }, '.', {
                            '$toString': '$b2'
                        }, '.', {
                            '$toString': '$b3'
                        }]
                    }
                    #'address': { '$concat': [{'$toString': '$b1'},'.',{'$toString': '$b2'}] }
                }
            },
        ])
        seq = list(cursor)
        seq = [v['address'] for v in seq]
        return np.array_split(seq, len(seq) // N)
コード例 #3
0
ファイル: pc2pix.py プロジェクト: eduarddohr/pc2pix
    def __init__(self,
                 ptcloud_ae=None,
                 gw=None,
                 dw=None,
                 pc_code_dim=32,
                 batch_size=2,
                 color=True,
                 gpus=1,
                 norm=False,
                 category='all'):

        self.noise_dim = 128
        self.ptcloud_ae = ptcloud_ae
        self.gw = gw
        self.dw = dw
        self.gpus = gpus
        self.pc_code_dim = pc_code_dim
        self.category = category
        self.model_dir = "saved_models"
        self.kernel_size = 3
        self.batch_size = batch_size
        self.generator = None
        self.discriminator = None
        self.adversarial = None
        os.makedirs(self.model_dir, exist_ok=True)
        os.makedirs("weights", exist_ok=True)
        self.color = color
        self.gen_spectral_normalization = False

        if color:
            # color images 128x128 rgb
            # items = ['im_128', 'pc', 'elev', 'azim']
            # if big color (224 x 224) rgb
            items = ['im_128', 'pc', 'elev', 'azim']
        else:
            # graycale images 224x224
            items = ['gray_128', 'pc', 'elev', 'azim']
        if category == 'all':
            if norm:
                path = 'all_exp_norm.json'
            else:
                path = category + '_exp.json'
        else:
            path = category + '_exp.json'
        self.split_file = os.path.join('data', path)

        self.train_source = DataSource(batch_size=self.batch_size, items=items, split_file=self.split_file)
        shapenet = self.train_source.dset
        self.epoch_datalen = len(shapenet.get_smids('train')) * shapenet.num_renders
        self.train_steps = self.epoch_datalen // self.batch_size

        pc_codes = "pc_codes"
        path = self.category + "-" + str(pc_code_dim) + "-pc_codes.npy"
        self.pc_codes_filename = os.path.join(pc_codes,path) # "weights/pc_codes.npy"
        self.test_source = DataSource(batch_size=36, smids='test', items=items, nepochs=20, split_file=self.split_file)

        self.build_gan()
コード例 #4
0
ファイル: Lightcurve.py プロジェクト: SteveOv/v3890_sgr
 def create_from_data_source(cls, name: str, data_source: DataSource,
                             grp_config: Dict):
     eruption_jd = grp_config["eruption_jd"]
     grp_query_params = grp_config["query_params"]
     lc_config = grp_config["lightcurves"][name]
     df = data_source.query(eruption_jd, grp_query_params, lc_config)
     return Lightcurve(name, df, **lc_config)
コード例 #5
0
    def __init__(self, datasource=None, buffer=25, vtype='plot'):
        if datasource is None:
            self.datasource = ds.RealTimeData()
        else:
            self.datasource = datasource
        self.DEFAULT_X = ["Time"]
        self.DEFAULT_Y = list(PLOT_META.keys())
        self.DEFAULT_VIEWTYPE = vtype
        self.figure, self.ax = plt.subplots()
        self.__bounds = [0, 100]
        self.plt_method = {}
        self._buffer_size = buffer
        L = []
        for i in range(buffer):
            L.append(datasource.to_dict())
        self.data = pd.DataFrame(L)
        self.color = {}
        Y = list(self.data.columns.values)
        for e in Y:
            if e not in PLOT_META.keys():
                self.plt_method[e] = "plot"
                self.color[e] = tuple(
                    [random.randrange(255) / 255 for i in range(3)])
                continue

            if PLOT_META[e]["plot_method"]:
                self.plt_method[e] = PLOT_META[e]["plot_method"]
            else:
                self.plt_method[e] = "plot"

            if PLOT_META[e]["color"]:
                self.color[e] = PLOT_META[e]["color"]
            else:
                self.color[e] = tuple(
                    [random.randrange(255) / 255 for i in range(3)])
コード例 #6
0
ファイル: Source.py プロジェクト: ZOUHEIRBN/fire_detection
 def __init__(self,
              X="Time",
              Y="Temperature",
              title='',
              bufSize=10,
              color="red",
              datasource=None):
     if datasource is None:
         self.dataSource = ds.RealTimeData()
     else:
         self.dataSource = datasource
     self.x = [X]
     self.y = [Y]
     self.inputX = [self.dataSource.to_dict()[X]] * (bufSize + 1)
     #self.inputX.append(self.dataSource.to_dict()[X])
     self.inputY = [self.dataSource.to_dict()[Y]] * (bufSize + 1)
     #self.inputY.append(self.dataSource.to_dict()[Y])
     self.history = [time.strftime('%M:%S', time.gmtime())] * len(X)
     self.__bufSize = bufSize + 1
     self.__title = title
     self.trace = plt.plot
     self.plot = None
     self.__fig = None
     self.__canvas = None
     self.fig = None
     self.color = color
     self.__freq = 10
コード例 #7
0
class ModelInference:
    def __init__(self):
        self.model = ModelTraining()
        self.data = DataSource()
        self.preprocessing = Preprocessing()

    def predict(self):
        '''
        Predict values using model trained.
        :return: pd.Series with predicted values.
        '''

        print('Loading Data')
        num_inscricao, test_df = self.data.read_data(etapa_treino=False)

        print('Preprocessing Data')
        X_test = self.preprocessing.process(test_df, etapa_treino=False)

        #Predict y result
        print('Predicting')

        #Call the trained model
        model, features = self.model.model_training()

        #Predict the y
        y_pred = model.predict(X_test[features])

        #Create dataframe that receive the notes
        print('Saving Files')
        df_answer = pd.DataFrame({
            'NU_INSCRICAO': num_inscricao,
            'NU_NOTA_MT': y_pred
        }).to_csv('answer.csv', index=False)

        return y_pred
コード例 #8
0
class ModelTraining:
    def __init__(self):
        self.data = DataSource()
        self.preprocessing = Preprocessing()

    def model_training(self):
        '''
        Train the model
        '''

        pre = Preprocessing()
        print('Loading data')

        df = self.data.read_data(etapa_treino=True)

        print('Training preprocessing')
        #Dataset splited and processed
        X, y, features = pre.process(df, etapa_treino=True)

        #Standardized with scaler
        scaler = StandardScaler()
        scaled = scaler.fit_transform(X, y)

        #Create model
        linear_regression_model = linear_model.LinearRegression()
        rf = RandomForestRegressor()

        #Train data
        model = rf.fit(X, y)

        return model, features
        '''
コード例 #9
0
    def __init__(self,
                 latent_dim=32,
                 kernel_size=5,
                 lr=1e-4,
                 category="all",
                 evaluate=False,
                 emd=True):

        self.latent_dim = latent_dim
        self.lr = lr
        self.batch_size = 32
        self.evaluate = evaluate
        self.emd = emd
        self.inputs = None
        self.encoder = None
        self.decoder = None
        self.ae = None
        self.z_log_var = None
        self.z_mean = None
        self.z = None
        self.kernel_size = kernel_size
        batch_size = 32
        self.model_dir = "saved_models"
        os.makedirs(self.model_dir, exist_ok=True)
        self.category = category
        if category == 'all':
            path = 'all_exp_norm.json'
        else:
            path = category + '_exp.json'
        split_file = os.path.join('data', path)
        print("Using train split file: ", split_file)

        self.train_source = DataSource(batch_size=batch_size,
                                       split_file=split_file)
        self.test_source = DataSource(batch_size=batch_size,
                                      smids='test',
                                      nepochs=20,
                                      split_file=split_file)
        shapenet = self.train_source.dset
        self.epoch_datalen = len(
            shapenet.get_smids('train')) * shapenet.num_renders
        self.train_steps = len(shapenet.get_smids(
            'train')) * shapenet.num_renders // self.batch_size
        _, pc = self.train_source.next_batch()
        self.input_shape = pc[0].shape
        self.build_ae()
コード例 #10
0
 def load_unique_data_with_frequencies(self, region, N, limit=0):
     DS = DataSource()
     db = DS.IPdatabase()
     maxlimit = db[region].count()
     if (limit <= 0) or (limit > maxlimit):
         limit = maxlimit
     cursor = db[region].aggregate([
         {
             '$sort': {
                 'date': 1
             }
         },
         {
             '$limit': limit
         },
         {
             '$project': {
                 #'address': { '$concat': [{'$toString': '$b1'},'.',{'$toString': '$b2'},'.',{'$toString': '$b3'},'.',{'$toString': '$b4'}] }
                 'address': {
                     '$concat': [{
                         '$toString': '$b1'
                     }, '.', {
                         '$toString': '$b2'
                     }, '.', {
                         '$toString': '$b3'
                     }]
                 }
                 #'address': { '$concat': [{'$toString': '$b1'},'.',{'$toString': '$b2'}] }
             }
         },
         {
             '$group': {
                 '_id': {
                     'address': '$address'
                 },
                 'count': {
                     "$sum": 1
                 }
             }
         }
     ])
     seq = list(cursor)
     seq = [(v['_id']['address'], v['count']) for v in seq]
     seq = sorted(seq, key=lambda x: x[1], reverse=True)
     return [s[0] for s in seq]
コード例 #11
0
ファイル: Server.py プロジェクト: ZOUHEIRBN/fire_detection
    def __init__(self, host='0.0.0.0', port=5001, system=None):
        super(Server, self).__init__(__name__,
                                     template_folder='../templates',
                                     static_folder='../static')
        self.RTData = ds.RealTimeData(server=self)
        self.host = host
        self.port = port

        if system is not None:
            self.system = system
        else:
            self.system = AlertSystem(server=self)

        self.add_url_rule('/', view_func=self.default_page)
        self.add_url_rule('/auth',
                          view_func=self.authenticate,
                          methods=["POST", "GET"])
        if self.host == '0.0.0.0':
            webbrowser.open('http://127.0.0.1:' + str(self.port) + '/')
        else:
            webbrowser.open('http://' + self.host + ':' + str(self.port) + '/')
コード例 #12
0
ファイル: Server.py プロジェクト: ZOUHEIRBN/fire_detection
    def visualizer(self):
        print()
        params = {
            'Cam': [
                f.replace('_', ' ').title() for f in dir(eff)
                if not (f.startswith('__') and f.endswith('__'))
                and f not in ['cv2', 'np']
            ],
            'Ptypes': ['Bar', 'Derived', 'Plot']
        }

        self.RTData = ds.RealTimeData(server=self)

        def func():
            return float(self.RTData.state["Fire"])

        self.awake_agent = FetchAgent(unique_id=0,
                                      model=self.system,
                                      func=func)
        self.awake_agent.set_threshold(0)

        self.add_url_rule('/video_feed',
                          view_func=self.video_feed,
                          methods=["POST", "GET"])
        self.add_url_rule('/graph_feed',
                          view_func=self.graph_feed,
                          methods=["POST", "GET"])
        self.add_url_rule('/score_feed',
                          view_func=self.score_feed,
                          methods=["POST", "GET"])
        self.add_url_rule('/notif_feed',
                          view_func=self.notif_feed,
                          methods=["POST", "GET"])
        self.add_url_rule('/realtime_feed',
                          view_func=self.data_feed,
                          methods=["POST", "GET"])
        self.add_url_rule('/rest_classifier',
                          view_func=self.classify_frame,
                          methods=["POST", "GET"])
        return render_template('visualizer.html', **params)
コード例 #13
0
class PC2Pix():
    def __init__(self,
                 ptcloud_ae=None,
                 gw=None,
                 dw=None,
                 pc_code_dim=32,
                 batch_size=64,
                 color=True,
                 gpus=1,
                 norm=False,
                 category='all'):

        self.noise_dim = 128
        self.ptcloud_ae = ptcloud_ae
        self.gw = gw
        self.dw = dw
        self.gpus = gpus
        self.pc_code_dim = pc_code_dim
        self.category = category
        self.model_dir = "saved_models"
        self.kernel_size = 3
        self.batch_size = batch_size
        self.generator = None
        self.discriminator = None
        self.adversarial = None
        os.makedirs(self.model_dir, exist_ok=True)
        os.makedirs("weights", exist_ok=True)
        self.color = color
        self.gen_spectral_normalization = False

        if color:
            # color images 128x128 rgb
            items = ['im_128', 'pc', 'elev', 'azim']
            # if big color (224 x 224) rgb
            # items = ['im', 'pc', 'elev', 'azim']
        else:
            # graycale images 224x224
            items = ['gray', 'pc', 'elev', 'azim']
        if category == 'all':
            if norm:
                path = 'all_exp_norm.json'
            else:
                path = category + '_exp.json'
        else:
            path = category + '_exp.json'
        self.split_file = os.path.join('data', path)

        self.train_source = DataSource(batch_size=self.batch_size,
                                       items=items,
                                       split_file=self.split_file)
        shapenet = self.train_source.dset
        self.epoch_datalen = len(
            shapenet.get_smids('train')) * shapenet.num_renders
        self.train_steps = self.epoch_datalen // self.batch_size

        pc_codes = "pc_codes"
        path = self.category + "-" + str(pc_code_dim) + "-pc_codes.npy"
        self.pc_codes_filename = os.path.join(pc_codes,
                                              path)  # "weights/pc_codes.npy"
        self.test_source = DataSource(batch_size=36,
                                      smids='test',
                                      items=items,
                                      nepochs=20,
                                      split_file=self.split_file)

        self.build_gan()

    def generate_fake_pc_codes(self):
        fake_pc_codes = None
        start_time = datetime.datetime.now()
        print("Generating fake pc codes...")
        steps = 4 * self.train_steps
        for i in range(steps):
            _, fake_pc, _, _ = self.train_source.next_batch()
            fake_pc = fake_pc / 0.5
            fake_pc_code = self.ptcloud_ae.encoder.predict(fake_pc)
            if fake_pc_codes is None:
                fake_pc_codes = fake_pc_code
            else:
                fake_pc_codes = np.append(fake_pc_codes, fake_pc_code, axis=0)
            elapsed_time = datetime.datetime.now() - start_time
            pcent = 100. * float(i) / steps
            log = "%0.2f%% [shape: %s] [time: %s]" % (
                pcent, fake_pc_codes.shape, elapsed_time)
            print(log)

        print("Saving pc codes to file: ", self.pc_codes_filename)
        np.save(self.pc_codes_filename, fake_pc_codes)

    def train_gan(self):
        plot_interval = 500
        save_interval = 500
        start_time = datetime.datetime.now()
        test_image, pc, test_elev_code, test_azim_code = self.test_source.next_batch(
        )
        pc = pc / 0.5
        test_pc_code = self.ptcloud_ae.encoder.predict(pc)
        noise_ = np.random.uniform(-1.0, 1.0, size=[36, self.noise_dim])
        test_image -= 0.5
        test_image /= 0.5
        ###
        test_elev_code *= 0.5
        test_elev_code += 0.5
        test_azim_code *= 0.5
        test_azim_code += 0.5
        ###
        plot_image(test_image, color=self.color)

        valid = np.ones([self.batch_size, 1])
        fake = np.zeros([self.batch_size, 1])

        valid_fake = np.concatenate((valid, fake))
        epochs = 120
        train_steps = self.train_steps * epochs

        fake_pc_codes = np.load(self.pc_codes_filename)
        fake_pc_codes_len = len(fake_pc_codes)
        print("Loaded pc codes", self.pc_codes_filename, " with len: ",
              fake_pc_codes_len)
        print("fake_pc_codes min: ", np.amin(fake_pc_codes),
              "fake_pc_codes max: ", np.amax(fake_pc_codes))
        print("test_pc_code min: ", np.amin(test_pc_code),
              " test_pc_code max: ", np.amax(test_pc_code))
        print("test_elev_code min: ", np.amin(test_elev_code),
              " test_elev_code max: ", np.amax(test_elev_code))
        print("test_azim_code min: ", np.amin(test_azim_code),
              " test_azim_code max: ", np.amax(test_azim_code))
        print("batch_size: ", self.batch_size, " pc_code_dim: ",
              self.pc_code_dim)
        print("Color images: ", self.color)

        for step in range(train_steps):
            real_image, real_pc, real_elev_code, real_azim_code = self.train_source.next_batch(
            )
            real_image -= 0.5
            real_image /= 0.5
            # pc is [-0.5, 0.5]
            real_pc = real_pc / 0.5
            real_pc_code = self.ptcloud_ae.encoder.predict(real_pc)

            rand_indexes = np.random.randint(0,
                                             fake_pc_codes_len,
                                             size=self.batch_size)
            fake_pc_code = fake_pc_codes[rand_indexes]

            pc_code = np.concatenate((real_pc_code, fake_pc_code))

            ###
            # fake_view_code = np.random.uniform(-1.0, 1.0, size=[self.batch_size, self.view_dim])
            real_elev_code *= 0.5
            real_elev_code += 0.5
            fake_elev_code = np.random.uniform(0.0,
                                               1.0,
                                               size=[self.batch_size, 1])
            real_azim_code *= 0.5
            real_azim_code += 0.5
            fake_azim_code = np.random.uniform(0.0,
                                               1.0,
                                               size=[self.batch_size, 1])
            ###

            elev_code = np.concatenate((real_elev_code, fake_elev_code))
            azim_code = np.concatenate((real_azim_code, fake_azim_code))

            noise = np.random.uniform(-1.0,
                                      1.0,
                                      size=[self.batch_size, self.noise_dim])
            fake_image = self.generator.predict(
                [noise, fake_pc_code, fake_elev_code, fake_azim_code])
            x = np.concatenate((real_image, fake_image))
            metrics = self.discriminator.train_on_batch(
                x, [valid_fake, pc_code, elev_code, azim_code])
            pcent = step * 100.0 / train_steps
            fmt = "%02.4f%%/%06d:[loss:%02.6f d:%02.6f pc:%02.6f elev:%02.6f azim:%02.6f]"
            log = fmt % (pcent, step, metrics[0], metrics[1], metrics[2],
                         metrics[3], metrics[4])

            rand_indexes = np.random.randint(0,
                                             fake_pc_codes_len,
                                             size=self.batch_size)
            fake_pc_code = fake_pc_codes[rand_indexes]

            ###
            # fake_view_code = np.random.uniform(-1.0, 1.0, size=[self.batch_size, self.view_dim])
            fake_elev_code = np.random.uniform(0.0,
                                               1.0,
                                               size=[self.batch_size, 1])
            fake_azim_code = np.random.uniform(0.0,
                                               1.0,
                                               size=[self.batch_size, 1])
            ###

            noise = np.random.uniform(-1.0,
                                      1.0,
                                      size=[self.batch_size, self.noise_dim])

            metrics = self.adversarial.train_on_batch(
                [noise, fake_pc_code, fake_elev_code, fake_azim_code],
                [valid, fake_pc_code, fake_elev_code, fake_azim_code])
            fmt = "%s [loss:%02.6f a:%02.6f pc:%02.6f elev:%02.6f azim:%02.6f]"
            log = fmt % (log, metrics[0], metrics[1], metrics[2], metrics[3],
                         metrics[4])

            elapsed_time = datetime.datetime.now() - start_time
            log = "%s [time: %s]" % (log, elapsed_time)
            print(log)
            if (step + 1) % plot_interval == 0 or step == 0:
                # plot generator images on a periodic basis
                show = False
                plot_images(self.generator,
                            noise=noise_,
                            pc_code=test_pc_code,
                            elev_code=test_elev_code,
                            azim_code=test_azim_code,
                            color=self.color,
                            show=show,
                            step=(step + 1))

            if (step + 1) % save_interval == 0 or step == 0:
                # save weights on a periodic basis

                prefix = self.category + "-gen"
                if self.color:
                    prefix += "-color"
                else:
                    prefix += "-gray"
                if self.gen_spectral_normalization:
                    prefix += "-sn"
                prefix += "-" + str(self.pc_code_dim)
                fname = os.path.join("weights", prefix + ".h5")
                self.generator_single.save_weights(fname)
                prefix = self.category + "-dis"
                if self.color:
                    prefix += "-color"
                else:
                    prefix += "-gray"
                if self.gen_spectral_normalization:
                    prefix += "-sn"
                prefix += "-" + str(self.pc_code_dim)
                fname = os.path.join("weights", prefix + ".h5")
                self.discriminator_single.save_weights(fname)

    def azim_loss(self, y_true, y_pred):
        rad = 2. * np.pi
        rad *= (y_true - y_pred)
        return K.mean(K.abs(tf.atan2(K.sin(rad), K.cos(rad))), axis=-1)

    def elev_loss(self, y_true, y_pred):
        # rad = 2. * np.pi * 80. /360.
        rad = 0.4444444444444444 * np.pi
        rad *= (y_true - y_pred)
        return K.mean(K.abs(tf.atan2(K.sin(rad), K.cos(rad))), axis=-1)

    def build_gan(self):
        # set if generator is going to use spectral norm
        image, pc, elev, azim = self.train_source.next_batch()
        elev_code = Input(shape=(1, ), name='elev_code')
        azim_code = Input(shape=(1, ), name='azim_code')
        pc_code = Input(shape=(self.pc_code_dim, ), name='pc_code')
        noise_code = Input(shape=(self.noise_dim, ), name='noise_code')
        model_name = "pc2pix"
        image_size = image.shape[1]
        if self.color:
            input_shape = (image_size, image_size, 3)
        else:
            input_shape = (image_size, image_size, 1)

        inputs = Input(shape=input_shape, name='image_input')
        if self.gen_spectral_normalization:
            optimizer = Adam(lr=4e-4, beta_1=0.0, beta_2=0.9)
        else:
            optimizer = Adam(lr=2e-4, beta_1=0.5, beta_2=0.999)

        # build discriminator
        # by default, discriminator uses SN
        if self.gpus <= 1:
            self.discriminator = model.discriminator(
                input_shape, pc_code_dim=self.pc_code_dim)
            if self.dw is not None:
                print("loading discriminator weights: ", self.dw)
                self.discriminator.load_weights(self.dw)
            self.discriminator_single = self.discriminator
        else:
            with tf.device("/cpu:0"):
                self.discriminator_single = model.discriminator(
                    input_shape, pc_code_dim=self.pc_code_dim)
                if self.dw is not None:
                    print("loading discriminator weights: ", self.dw)
                    self.discriminator_single.load_weights(self.dw)

            self.discriminator = multi_gpu_model(self.discriminator_single,
                                                 gpus=self.gpus)

        loss = ['binary_crossentropy', 'mae', self.elev_loss, self.azim_loss]
        loss_weights = [1., 10., 10., 10.]
        self.discriminator.compile(loss=loss,
                                   loss_weights=loss_weights,
                                   optimizer=optimizer)
        self.discriminator_single.summary()
        path = os.path.join(self.model_dir, "discriminator.png")
        plot_model(self.discriminator_single, to_file=path, show_shapes=True)

        # build generator
        # try SN to see if mode collapse is avoided
        if self.gpus <= 1:
            self.generator = model.generator(
                input_shape,
                noise_code=noise_code,
                pc_code=pc_code,
                elev_code=elev_code,
                azim_code=azim_code,
                spectral_normalization=self.gen_spectral_normalization,
                color=self.color)
            if self.gw is not None:
                print("loading generator weights: ", self.gw)
                self.generator.load_weights(self.gw)
            self.generator_single = self.generator
        else:
            with tf.device("/cpu:0"):
                self.generator_single = model.generator(
                    input_shape,
                    noise_code=noise_code,
                    pc_code=pc_code,
                    elev_code=elev_code,
                    azim_code=azim_code,
                    spectral_normalization=self.gen_spectral_normalization,
                    color=self.color)
                if self.gw is not None:
                    print("loading generator weights: ", self.gw)
                    self.generator_single.load_weights(self.gw)

            self.generator = multi_gpu_model(self.generator_single,
                                             gpus=self.gpus)

        self.generator_single.summary()
        path = os.path.join(self.model_dir, "generator.png")
        plot_model(self.generator_single, to_file=path, show_shapes=True)

        self.discriminator.trainable = False
        if self.gen_spectral_normalization:
            optimizer = Adam(lr=1e-4, beta_1=0.0, beta_2=0.9)
        else:
            optimizer = Adam(lr=1e-4, beta_1=0.5, beta_2=0.999)

        if self.gpus <= 1:
            self.adversarial = Model(
                [noise_code, pc_code, elev_code, azim_code],
                self.discriminator(
                    self.generator([noise_code, pc_code, elev_code,
                                    azim_code])),
                name=model_name)
            self.adversarial_single = self.adversarial
        else:
            with tf.device("/cpu:0"):
                self.adversarial_single = Model(
                    [noise_code, pc_code, elev_code, azim_code],
                    self.discriminator(
                        self.generator(
                            [noise_code, pc_code, elev_code, azim_code])),
                    name=model_name)
            self.adversarial = multi_gpu_model(self.adversarial_single,
                                               gpus=self.gpus)

        self.adversarial.compile(loss=loss,
                                 loss_weights=loss_weights,
                                 optimizer=optimizer)
        self.adversarial_single.summary()
        path = os.path.join(self.model_dir, "adversarial.png")
        plot_model(self.adversarial_single, to_file=path, show_shapes=True)

        print("Using split file: ", self.split_file)
        print("1 epoch datalen: ", self.epoch_datalen)
        print("1 epoch train steps: ", self.train_steps)
        print("Using pc codes: ", self.pc_codes_filename)

    def stop_sources(self):
        self.train_source.close()
        self.test_source.close()

    def __del__(self):
        self.stop_sources()
コード例 #14
0
ファイル: main.py プロジェクト: ser-art/attention-ocr-keras
import math
import argparse
import tensorflow as tf
from trainer import Trainer
from data import DataSource
from model import OCRModel

tf.random.set_seed(54321)
rnn_size = 256
batch_size = 16

parser = argparse.ArgumentParser()
parser.add_argument("--dataset_dir",
                    default=None,
                    type=str,
                    help="root directory of the dataset files")
args = parser.parse_args()
if args.dataset_dir is not None:
    data_source = DataSource(dataset_dir=args.dataset_dir)
else:
    data_source = DataSource()

model = OCRModel(input_shape=data_source.config['image_shape'],
                 seq_length=data_source.config['max_sequence_length'],
                 rnn_size=rnn_size,
                 charset=data_source.charset,
                 num_views=data_source.config['num_of_views'])
trainer = Trainer(model, data_source.config['null_code'])
trainer.train(25, data_source, batch_size)
コード例 #15
0
 def __init__(self):
     self.model = ModelTraining()
     self.data = DataSource()
     self.preprocessing = Preprocessing()
コード例 #16
0
 def ros_process(self):
   data = DataSource(self.data_ser)
コード例 #17
0
class PtCloudStackedAE():
    def __init__(self,
                 latent_dim=32,
                 kernel_size=5,
                 lr=1e-4,
                 category="all",
                 evaluate=False,
                 emd=True):

        self.latent_dim = latent_dim
        self.lr = lr
        self.batch_size = 32
        self.evaluate = evaluate
        self.emd = emd
        self.inputs = None
        self.encoder = None
        self.decoder = None
        self.ae = None
        self.z_log_var = None
        self.z_mean = None
        self.z = None
        self.kernel_size = kernel_size
        batch_size = 32
        self.model_dir = "saved_models"
        os.makedirs(self.model_dir, exist_ok=True)
        self.category = category
        if category == 'all':
            path = 'all_exp_norm.json'
        else:
            path = category + '_exp.json'
        split_file = os.path.join('data', path)
        print("Using train split file: ", split_file)

        self.train_source = DataSource(batch_size=batch_size,
                                       split_file=split_file)
        self.test_source = DataSource(batch_size=batch_size,
                                      smids='test',
                                      nepochs=20,
                                      split_file=split_file)
        shapenet = self.train_source.dset
        self.epoch_datalen = len(
            shapenet.get_smids('train')) * shapenet.num_renders
        self.train_steps = len(shapenet.get_smids(
            'train')) * shapenet.num_renders // self.batch_size
        _, pc = self.train_source.next_batch()
        self.input_shape = pc[0].shape
        self.build_ae()

    def encoder_layer(self, x, filters, strides=1, dilation_rate=1):
        x = BatchNormalization()(x)
        x = Activation('relu')(x)
        x = Conv1D(filters=filters,
                   kernel_size=self.kernel_size,
                   strides=strides,
                   dilation_rate=dilation_rate,
                   padding='same')(x)
        return x

    def compression_layer(self, x, y, maxpool=True):
        if maxpool:
            y = MaxPooling1D()(y)
        x = concatenate([x, y])

        y = Conv1D(filters=64,
                   kernel_size=1,
                   activation='relu',
                   padding='same')(x)
        return x, y

    def build_encoder(self, filters=64, activation='linear'):

        self.inputs = Input(shape=self.input_shape, name='encoder_input')
        x = self.inputs
        y = self.inputs
        strides = 2
        maxpool = True
        x1 = self.encoder_layer(x, filters, strides=1, dilation_rate=1)
        x2 = self.encoder_layer(x, filters, strides=1, dilation_rate=2)
        x4 = self.encoder_layer(x, filters, strides=1, dilation_rate=4)
        x8 = self.encoder_layer(x, filters, strides=1, dilation_rate=8)
        x = concatenate([x1, x2, x4, x8])
        x, y = self.compression_layer(x, y, maxpool=False)

        x = self.encoder_layer(x, 128, strides=2, dilation_rate=1)

        x1 = self.encoder_layer(x, filters, strides=1, dilation_rate=1)
        x2 = self.encoder_layer(x, filters, strides=1, dilation_rate=2)
        x4 = self.encoder_layer(x, filters, strides=1, dilation_rate=4)
        x8 = self.encoder_layer(x, filters, strides=1, dilation_rate=8)
        x = concatenate([x1, x2, x4, x8])
        x, y = self.compression_layer(x, y, maxpool=True)

        x = self.encoder_layer(x, 128, strides=2, dilation_rate=1)

        x1 = self.encoder_layer(x, filters, strides=1, dilation_rate=1)
        x2 = self.encoder_layer(x, filters, strides=1, dilation_rate=2)
        x4 = self.encoder_layer(x, filters, strides=1, dilation_rate=4)
        x8 = self.encoder_layer(x, filters, strides=1, dilation_rate=8)
        x = concatenate([x1, x2, x4, x8])
        x, y = self.compression_layer(x, y, maxpool=True)

        x = self.encoder_layer(x, 128, strides=2, dilation_rate=1)

        x1 = self.encoder_layer(x, filters, strides=1, dilation_rate=1)
        x2 = self.encoder_layer(x, filters, strides=1, dilation_rate=2)
        x4 = self.encoder_layer(x, filters, strides=1, dilation_rate=4)
        x8 = self.encoder_layer(x, filters, strides=1, dilation_rate=8)
        x = concatenate([x1, x2, x4, x8])
        x, y = self.compression_layer(x, y, maxpool=True)

        x = self.encoder_layer(x, 32)
        shape = K.int_shape(x)

        x = Flatten()(x)
        # x = Dense(128, activation='relu')(x)
        # experimental tanh activation, revert to none or linear if needed
        outputs = Dense(self.latent_dim,
                        activation=activation,
                        name='ae_encoder_out')(x)
        path = os.path.join(self.model_dir, "ae_encoder.png")
        self.encoder = Model(self.inputs, outputs, name='ae_encoder')

        self.encoder.summary()
        plot_model(self.encoder, to_file=path, show_shapes=True)

        return shape, filters

    def build_decoder_mlp(self, dim=1024):

        # build decoder model
        latent_inputs = Input(shape=(self.latent_dim, ), name='decoder_input')
        x = latent_inputs
        x = Dense(dim, activation='relu')(x)
        x = Dense(dim, activation='relu')(x)
        x = Dense(dim, activation='relu')(x)
        x = Dense(np.prod(self.input_shape), activation='tanh')(x)
        outputs = Reshape(self.input_shape)(x)

        path = os.path.join(self.model_dir, "decoder_mlp.png")
        # instantiate decoder model
        self.decoder = Model(latent_inputs, outputs, name='decoder')
        self.decoder.summary()
        plot_model(self.decoder, to_file=path, show_shapes=True)

    def build_decoder(self, filters, shape):

        # build decoder model
        latent_inputs = Input(shape=(self.latent_dim, ), name='decoder_input')
        pt_cloud_shape = (shape[1], shape[2])
        dim = shape[1] * shape[2]
        x = Dense(128, activation='relu')(latent_inputs)
        x = Dense(dim, activation='relu')(x)
        x = Reshape(pt_cloud_shape)(x)

        for i in range(4):
            x = BatchNormalization()(x)
            x = Activation('relu')(x)
            x = Conv1D(filters=filters,
                       kernel_size=self.kernel_size,
                       padding='same')(x)
            x = UpSampling1D()(x)
            filters //= 2

        outputs = Conv1D(filters=3,
                         kernel_size=self.kernel_size,
                         activation='tanh',
                         padding='same',
                         name='decoder_output')(x)

        path = os.path.join(self.model_dir, "decoder.png")
        # instantiate decoder model
        self.decoder = Model(latent_inputs, outputs, name='decoder')
        self.decoder.summary()
        plot_model(self.decoder, to_file=path, show_shapes=True)

    def loss(self, gt, pred):
        from tf_ops.emd import tf_auctionmatch
        from tf_ops.sampling import tf_sampling
        #from tf_ops.CD import tf_nndistance
        from structural_losses import tf_nndistance
        # from structural_losses.tf_approxmatch import approx_match, match_cost

        if self.emd:
            matchl_out, matchr_out = tf_auctionmatch.auction_match(pred, gt)
            matched_out = tf_sampling.gather_point(gt, matchl_out)
            emd_loss = tf.reshape((pred - matched_out)**2,
                                  shape=(self.batch_size, -1))
            emd_loss = tf.reduce_mean(emd_loss, axis=1, keepdims=True)
            return emd_loss
        else:
            #cost_p1_p2, _, cost_p2_p1, _ = nn_distance(self.x_reconstr, self.gt)
            #self.loss = tf.reduce_mean(cost_p1_p2) + tf.reduce_mean(cost_p2_p1)

            p1top2, _, p2top1, _ = tf_nndistance.nn_distance(pred, gt)
            #p1top2 is for each element in gt, the cloest distance to this element
            # cd_loss = p1top2 + p2top1
            cd_loss = K.mean(p1top2) + K.mean(p2top1)
            # cd_loss = K.mean(cd_loss)
            return cd_loss

    def build_ae(self):
        shape, filters = self.build_encoder()
        decoder = self.build_decoder_mlp()

        outputs = self.decoder(self.encoder(self.inputs))
        self.ae = Model(self.inputs, outputs, name='ae')

        self.ae.summary()
        #if not self.evaluate:
        #    self.ae.add_loss(self.loss)
        optimizer = RMSprop(lr=self.lr)
        if not self.evaluate:
            self.ae.compile(optimizer=optimizer, loss=self.loss)
        path = os.path.join(self.model_dir, "ae.png")
        plot_model(self.ae, to_file=path, show_shapes=True)
        print("Learning rate: ", self.lr)

    def train_ae(self):
        save_interval = 500
        print_interval = 100
        start_time = datetime.datetime.now()
        loss = 0.0
        epochs = 30
        train_steps = self.train_steps * epochs

        for step in range(train_steps):
            _, pc = self.train_source.next_batch()
            pc = pc / 0.5
            metrics = self.ae.train_on_batch(x=pc, y=pc)
            loss += metrics

            if (step + 1) % print_interval == 0:
                elapsed_time = datetime.datetime.now() - start_time
                loss /= print_interval
                pcent = step * 100.0 / train_steps
                fmt = "%02.4f%%/%06d:[loss:%02.6f time:%s]"
                log = fmt % (pcent, step + 1, loss, elapsed_time)
                # log = "%d: [loss: %0.6f] [time: %s]" % (step + 1, loss, elapsed_time)
                print(log)
                loss = 0.0

            if (step + 1) % save_interval == 0:
                prefix = self.category + "-" + "pt-cloud-stacked-ae"
                if self.emd:
                    prefix += "-emd"
                else:
                    prefix += "-chamfer"
                prefix += "-" + str(self.kernel_size)
                weights_dir = "weights"
                save_weights(self.encoder,
                             "encoder",
                             weights_dir,
                             self.latent_dim,
                             prefix=prefix)
                save_weights(self.decoder,
                             "decoder",
                             weights_dir,
                             self.latent_dim,
                             prefix=prefix)
                save_weights(self.ae,
                             "ae",
                             weights_dir,
                             self.latent_dim,
                             prefix=prefix)

    def stop_sources(self):
        self.train_source.close()
        self.test_source.close()

    def __del__(self):
        self.stop_sources()
コード例 #18
0
 def _init_(self):
     self.data = DataSource()
コード例 #19
0
ファイル: driver.py プロジェクト: royalron/ClusterAttack
def cluster4(region, N, kp, limit):
    CL = Simulator()
    DS = DataSource()

    print('Attacking from two different accounts...')
    print('limit:', limit)

    dataset_A = CL.load_data(region + '-A', N, limit)
    n = len(dataset_A)
    dataset_B = CL.load_data(region + '-B', N, limit)
    m = len(dataset_B)

    if n < m:
        dataset_B = dataset_B[:n]
    else:
        dataset_A = dataset_A[:m]

    n = len(dataset_A)

    print('Dataset size: ', n)

    #A cutoff to separate train and test sequences.
    train_cutoff = int(n * 0.70)

    X_train = dataset_A
    X_test = dataset_B

    U = CL.unique_combinations(X_train)

    print('Unique values: ', len(U))

    #Choose the size of clusters.
    K = int(kp * len(X_train))

    print('Size of train set', len(X_train), 'and the test set', len(X_test),
          'K:', K)
    clusters, T = CL.hausdorffcluster(X_train, K, N)
    store_clusters(X_train, clusters, region)
    store_matrix(T, region)

    failed, counts1 = CL.simulate_attack(X_train, X_test, T, clusters, region,
                                         U)

    failed, counts2 = CL.simulate_random_attack(X_train,
                                                X_test,
                                                region,
                                                U,
                                                maxtrials=floor(
                                                    stats.mean(counts1)))

    F = CL.load_unique_data_with_frequencies(region, N, limit=len(X_train * N))

    failed, counts3 = CL.simulate_frequency_attack(X_train,
                                                   X_test,
                                                   region,
                                                   F,
                                                   maxtrials=floor(
                                                       stats.mean(counts1)))

    #plt.figure(figsize=(15,15))
    #plt.tight_layout()
    plt.boxplot([counts1, counts3, counts2],
                meanline=True,
                showcaps=True,
                whis='range')

    #plt.legend(['Cluster','Random','Frequency'],loc=1, prop={'size': 8})
    #plt.ylabel('Number of guesses to predict N Prefixes',wrap=True)
    #plt.xlabel('Attack strategy')
    plt.xticks([1, 2, 3], ['Cluster', 'Frequency', 'Random'])
    plt.savefig('results_' + region + '.pdf', format='pdf')

    f = open('count_c_' + region, 'wb')
    pickle.dump(counts1, f)
    f.close()

    f = open('count_r_' + region, 'wb')
    pickle.dump(counts3, f)
    f.close()

    f = open('count_f_' + region, 'wb')
    pickle.dump(counts2, f)
    f.close()
コード例 #20
0
ファイル: driver.py プロジェクト: royalron/ClusterAttack
def cluster3(region, N, kp, limit):
    CL = Simulator()
    DS = DataSource()
    dataset = CL.load_data(region, N, limit)
    n = len(dataset)

    print('Dataset size: ', n)

    #A cutoff to separate train and test sequences.
    train_cutoff = int(n * 0.70)

    X_train = dataset[:train_cutoff]
    X_test = dataset[train_cutoff:]

    U = CL.unique_combinations(X_train)

    print('Unique values: ', len(U))

    #Choose the size of clusters.
    K = int(kp * len(X_train))

    print('Size of train set', len(X_train), 'and the test set', len(X_test),
          'K:', K)
    clusters, T = CL.hausdorffcluster(X_train, K, N)
    store_clusters(X_train, clusters, region)
    store_matrix(T, region)

    failed, counts1 = CL.simulate_attack(X_train, X_test, T, clusters, region,
                                         U)

    failed, counts2 = CL.simulate_random_attack(X_train,
                                                X_test,
                                                region,
                                                U,
                                                maxtrials=floor(
                                                    stats.mean(counts1)))

    F = CL.load_unique_data_with_frequencies(region, N, limit=len(X_train) * N)

    failed, counts3 = CL.simulate_frequency_attack(X_train,
                                                   X_test,
                                                   region,
                                                   F,
                                                   maxtrials=floor(
                                                       stats.mean(counts1)))

    #plt.figure(figsize=(5,5))
    plt.tight_layout()
    plt.boxplot([counts1, counts3, counts2],
                meanline=True,
                showcaps=True,
                whis='range',
                widths=0.3)

    #plt.legend(['Cluster','Random','Frequency'],loc=1, prop={'size': 8})
    #plt.ylabel('Number of guesses to predict N Prefixes',wrap=True)
    #plt.xlabel('Attack strategy')
    plt.xticks([1, 2, 3], ['Cluster', 'Frequency', 'Random'])
    plt.savefig('results_' + region + '.pdf', format='pdf')

    f = open('allcounts_' + region, 'w')
    print(counts1, file=f)
    print(counts3, file=f)
    print(counts2, file=f)
    f.close()
コード例 #21
0
 def __init__(self):
     self.data = DataSource()
     self.preprocessing = Preprocessing()
コード例 #22
0
ファイル: spectroscopy.py プロジェクト: SteveOv/v3890_sgr
import json
from data import DataSource
from plot import PlotHelper
from utility import timing as tm, magnitudes as mag
from spectroscopy import line_fitting

settings = json.load(open("spectroscopy.json"))
eruption_jd = 2458723.278

print(F"\n\n****************************************************************")
print(F"* Ingesting data and creating the spectroscopy data sources.")
print(F"****************************************************************")
data_sources = {}
for spec_name, ds_config in settings["data_sources"].items():
    data_sources[spec_name] = DataSource.create_from_config(
        ds_config, "CalibratedSpectralDataSource")

print(F"\n\n****************************************************************")
print(F"* Fitting spectral lines and deriving parameters.")
print(F"****************************************************************")
line_fit_sets = {}
for spec_key, data_source in data_sources.items():
    line_fit_sets[spec_key] = line_fitting.fit(data_source.query(), spec_key)

print(F"\n\n****************************************************************")
print(F"* Producing plots of spectroscopy data and lines ")
print(F"****************************************************************")
for plot_group_config in settings["plots"]:
    print(F"\nProcessing plot group: {plot_group_config}")
    flux_units = mag.units_flux_density_cgs_angstrom
コード例 #23
0
ファイル: evaluator.py プロジェクト: nsl2014fm/PSPNet-Keras
        intersection = np.logical_and(gt_s, pr_s)
        union = np.logical_or(gt_s, pr_s)

        precision, recall, iou = np.nan, np.nan, np.nan
        if np.sum(pr_s) != 0:
            precision = 1. * np.sum(intersection) / np.sum(pr_s)
        if np.sum(gt_s) != 0:
            recall = 1. * np.sum(intersection) / np.sum(gt_s)
        if np.sum(union) != 0:
            iou = 1.0 * np.sum(intersection) / np.sum(union)
        results[:, i] = [precision, recall, iou]
    return results


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("-p", "--project", required=True, help="Project name")
    parser.add_argument("--prediction",
                        required=True,
                        help="Pspnet prediction")
    parser.add_argument("-n", "--name", required=True, help="Name of run")
    args = parser.parse_args()

    config = utils.get_config(args.project)
    config["pspnet_prediction"] = args.prediction
    datasource = DataSource(config)

    evaluator = Evaluator(args.name, args.project)
    evaluator.evaluate(datasource)
コード例 #24
0
                        help="path to restore model for testing",
                        default="")

    args = parser.parse_args()

    device = torch.device('cpu')
    if 'cuda' in args.device:
        if torch.cuda.is_available():
            device = torch.device(args.device)
        else:
            print("cuda not available...")
    print("Using device {}".format(device))

    print("loading datasets...")
    n = None
    train_data = DataSource("train", n=n)
    print("loaded {} train data".format(len(train_data)))
    dev_data = DataSource("dev", n=n)
    print("loaded {} dev data".format(len(dev_data)))
    test_data = DataSource("test", n=n)
    print("loaded {} test data".format(len(test_data)))

    model = BiLSTM(128, device)
    print("allocated model")

    if args.restore == "":
        losses = train()
        print("graphing")
        graph_losses(losses)
    else:
        model.load_state_dict(torch.load(args.restore))
コード例 #25
0
ファイル: shapefile.py プロジェクト: yemikudaisi/Micro-GIS
 def __init__(self, type, connectionString):
     DataSource.__init__(self, type, connectionString)