else: train_percent = 20 ablation = "all" shuffle = False metapath_length = 3 mlp_settings = {'layer_list': [256], 'dropout_list': [0.5], 'activation': 'sigmoid'} info_section = 40 # total embedding dim = info_section *3 = 120 learning_rate = 0.01 # select_method = "all_node" # Only used in end-node study single_path_limit = 5 # lambda = 5 # Automatically calculated parameters num_batch_per_epoch = 5 # 每个epoch循环的批次数 batch_size = train_percent // 20 * 96 DEVICE = "cuda" if torch.cuda.is_available() else "cpu" data = HeteData(dataset=dataset, train_percent=train_percent, shuffle=shuffle) graph_list = data.get_dict_of_list() homo_graph = nx.to_dict_of_lists(data.homo_graph) input_dim = data.x.shape[1] pre_embed_dim = data.type_num * info_section output_dim = max(data.train_list[:, 1].tolist()) + 1 # 隐藏单元节点数 两层 DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # 获取预处理数据 assert select_method in ["end_node", "all_node"] x = data.x train_list = data.train_list # 训练节点/数据对应的标签 test_list = data.test_list # 测试节点/数据对应的索引 val_list = data.val_list # 验证节点/数据对应的索引
'activation': 'sigmoid' } info_section = 40 # total embedding dim = info_section *3 = 120 learning_rate = 0.01 # select_method = "all_node" # Only used in end-node study single_path_limit = 8 # lambda = 5 metapath_name = {'P': ['PA', 'PS']} metapath_list = [[0], [2]] print("Selected Path: PA, PS") # Automatically calculated parameters num_batch_per_epoch = 5 # 每个epoch循环的批次数 batch_size = train_percent // 20 * 96 DEVICE = "cuda" if torch.cuda.is_available() else "cpu" data = HeteData(dataset=dataset, train_percent=train_percent, shuffle=shuffle) graph_list = data.get_dict_of_list() homo_graph = nx.to_dict_of_lists(data.homo_graph) input_dim = data.x.shape[1] pre_embed_dim = data.type_num * info_section output_dim = max(data.train_list[:, 1].tolist()) + 1 # 隐藏单元节点数 两层 DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # 获取预处理数据 assert select_method in ["end_node", "all_node"] x = data.x train_list = data.train_list # 训练节点/数据对应的标签 test_list = data.test_list # 测试节点/数据对应的索引