コード例 #1
0
ファイル: train.py プロジェクト: nikolausn/AMR-parser
def main(args, local_rank):
    vocabs = dict()
    vocabs['tok'] = Vocab(args.tok_vocab, 5, [CLS])
    vocabs['lem'] = Vocab(args.lem_vocab, 5, [CLS])
    vocabs['pos'] = Vocab(args.pos_vocab, 5, [CLS])
    vocabs['ner'] = Vocab(args.ner_vocab, 5, [CLS])
    vocabs['predictable_concept'] = Vocab(args.predictable_concept_vocab, 10,
                                          [DUM, END])
    vocabs['concept'] = Vocab(args.concept_vocab, 5, [DUM, END])
    vocabs['rel'] = Vocab(args.rel_vocab, 50, [NIL])
    vocabs['word_char'] = Vocab(args.word_char_vocab, 100, [CLS, END])
    vocabs['concept_char'] = Vocab(args.concept_char_vocab, 100, [CLS, END])
    lexical_mapping = LexicalMap(args.lexical_mapping)
    if args.pretrained_word_embed is not None:
        vocab, pretrained_embs = load_pretrained_word_embed(
            args.pretrained_word_embed)
        vocabs['glove'] = vocab
    else:
        pretrained_embs = None

    for name in vocabs:
        print((name, vocabs[name].size))

    torch.manual_seed(19940117)
    torch.cuda.manual_seed_all(19940117)
    random.seed(19940117)
    device = torch.device('cuda', local_rank)
    #print(device)
    #exit()
    model = Parser(vocabs,
                   args.word_char_dim,
                   args.word_dim,
                   args.pos_dim,
                   args.ner_dim,
                   args.concept_char_dim,
                   args.concept_dim,
                   args.cnn_filters,
                   args.char2word_dim,
                   args.char2concept_dim,
                   args.embed_dim,
                   args.ff_embed_dim,
                   args.num_heads,
                   args.dropout,
                   args.snt_layers,
                   args.graph_layers,
                   args.inference_layers,
                   args.rel_dim,
                   pretrained_embs,
                   device=device)

    if args.world_size > 1:
        torch.manual_seed(19940117 + dist.get_rank())
        torch.cuda.manual_seed_all(19940117 + dist.get_rank())
        random.seed(19940117 + dist.get_rank())

    model = model.cuda(local_rank)
    train_data = DataLoader(vocabs,
                            lexical_mapping,
                            args.train_data,
                            args.train_batch_size,
                            for_train=True)
    dev_data = DataLoader(vocabs,
                          lexical_mapping,
                          args.dev_data,
                          args.dev_batch_size,
                          for_train=True)
    train_data.set_unk_rate(args.unk_rate)

    weight_decay_params = []
    no_weight_decay_params = []
    for name, param in model.named_parameters():
        if name.endswith('bias') or 'layer_norm' in name:
            no_weight_decay_params.append(param)
        else:
            weight_decay_params.append(param)
    grouped_params = [{
        'params': weight_decay_params,
        'weight_decay': 1e-4
    }, {
        'params': no_weight_decay_params,
        'weight_decay': 0.
    }]
    optimizer = AdamWeightDecayOptimizer(grouped_params,
                                         lr=args.lr,
                                         betas=(0.9, 0.999),
                                         eps=1e-6)

    batches_acm, loss_acm, concept_loss_acm, arc_loss_acm, rel_loss_acm = 0, 0, 0, 0, 0
    #model.load_state_dict(torch.load('./ckpt/epoch297_batch49999')['model'])
    discarded_batches_acm = 0
    queue = mp.Queue(10)
    train_data_generator = mp.Process(target=data_proc,
                                      args=(train_data, queue))
    train_data_generator.start()

    used_batches = 0
    if args.resume_ckpt:
        ckpt = torch.load(args.resume_ckpt)
        model.load_state_dict(ckpt['model'])
        optimizer.load_state_dict(ckpt['optimizer'])
        batches_acm = ckpt['batches_acm']
        del ckpt

    model.train()
    epoch = 0
    while True:
        batch = queue.get()
        #print("epoch",epoch)
        #print("batches_acm",batches_acm)
        #print("used_batches",used_batches)
        if isinstance(batch, str):
            epoch += 1
            print('epoch', epoch, 'done', 'batches', batches_acm)
        else:
            batch = move_to_device(batch, model.device)
            concept_loss, arc_loss, rel_loss = model(batch)
            loss = (concept_loss + arc_loss +
                    rel_loss) / args.batches_per_update
            loss_value = loss.item()
            concept_loss_value = concept_loss.item()
            arc_loss_value = arc_loss.item()
            rel_loss_value = rel_loss.item()
            if batches_acm > args.warmup_steps and arc_loss_value > 5. * (
                    arc_loss_acm / batches_acm):
                discarded_batches_acm += 1
                print('abnormal', concept_loss.item(), arc_loss.item(),
                      rel_loss.item())
                continue
            loss_acm += loss_value
            concept_loss_acm += concept_loss_value
            arc_loss_acm += arc_loss_value
            rel_loss_acm += rel_loss_value
            loss.backward()

            used_batches += 1
            if not (used_batches % args.batches_per_update
                    == -1 % args.batches_per_update):
                continue
            batches_acm += 1

            if args.world_size > 1:
                average_gradients(model)
            torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
            update_lr(optimizer, args.embed_dim, batches_acm,
                      args.warmup_steps)
            optimizer.step()
            optimizer.zero_grad()
            if args.world_size == 1 or (dist.get_rank() == 0):
                if batches_acm % args.print_every == -1 % args.print_every:
                    print(
                        'Train Epoch %d, Batch %d, Discarded Batch %d, conc_loss %.3f, arc_loss %.3f, rel_loss %.3f'
                        % (epoch, batches_acm, discarded_batches_acm,
                           concept_loss_acm / batches_acm, arc_loss_acm /
                           batches_acm, rel_loss_acm / batches_acm))
                    model.train()

                if batches_acm % args.eval_every == -1 % args.eval_every:
                    model.eval()
                    torch.save(
                        {
                            'args': args,
                            'model': model.state_dict(),
                            'batches_acm': batches_acm,
                            'optimizer': optimizer.state_dict()
                        },
                        '%s/epoch%d_batch%d' % (args.ckpt, epoch, batches_acm))
                    model.train()
コード例 #2
0
            pickle.dump(self.sequence_autoencoder.to_json(), file)
        with open(hyper_params_file, mode='wb') as file:
            pickle.dump(self.get_hyper_params(), file)


def predict_sentences(predictions, vocab):
    return [
        " ".join(vocab.IdToWord(i) for i in prediction)
        for prediction in predictions
    ]


if __name__ == '__main__':
    vocab_file = '../vocab/vocab'
    tokenizer_file = '../tokenizer/src_tokenizer'
    vocab = Vocab(vocab_file, 100000)
    tokenizer = Tokenizer(vocab)
    with open(tokenizer_file, mode='wb') as file:
        pickle.dump(tokenizer, file)
    max_sequence_len = 10
    batch_size = 4
    p = Preprocessor(batch_size, 'data/sentences.txt', tokenizer,
                     max_sequence_len)

    embedding_dim = 50
    hidden_dim = 100
    ae = AutoEncoder(max_sequence_len, vocab.NumIds(), embedding_dim,
                     hidden_dim)
    ae.build_models()
    reducelr_cb = ReduceLROnPlateau(monitor='val_loss',
                                    factor=0.5,
コード例 #3
0
def main(unused_argv):
    FLAGS.sticker_path = os.path.join(FLAGS.base_path, FLAGS.sticker_path)
    FLAGS.data_path = os.path.join(FLAGS.base_path, FLAGS.data_path)
    FLAGS.test_path = os.path.join(FLAGS.base_path, FLAGS.test_path)
    FLAGS.vocab_path = os.path.join(FLAGS.base_path, FLAGS.vocab_path)
    FLAGS.emoji_vocab_path = os.path.join(FLAGS.base_path, FLAGS.emoji_vocab_path)
    FLAGS.inception_ckpt = os.path.join(FLAGS.base_path, FLAGS.inception_ckpt)
    if 'decode' in FLAGS.mode:
        FLAGS.single_pass = True
        FLAGS.batch_size = 4
        FLAGS.dataset_size = -1
    vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size)  # create a vocabulary
    emoji_vocab = Vocab(FLAGS.emoji_vocab_path, FLAGS.emoji_vocab_size)  # create a vocabulary
    if 'decode' in FLAGS.mode:
        batcher = Batcher(FLAGS.test_path, vocab, emoji_vocab, single_pass=FLAGS.single_pass)
    else:
        batcher = Batcher(FLAGS.data_path, vocab, emoji_vocab, single_pass=FLAGS.single_pass)

    if 'decode' in FLAGS.mode:
        os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
        import logging
        log = logging.getLogger('tensorflow')
        log.setLevel(logging.FATAL)
        for h in log.handlers:
            log.removeHandler(h)
        log.addHandler(logging.NullHandler())

    # GPU tricks
    if FLAGS.device is None:
        index_of_gpu = get_available_gpu()
        if index_of_gpu < 0:
            index_of_gpu = ''
        FLAGS.device = index_of_gpu
        tf.logging.info(bcolors.OKGREEN + 'using {}'.format(FLAGS.device) + bcolors.ENDC)
    else:
        index_of_gpu = FLAGS.device
    os.environ["CUDA_VISIBLE_DEVICES"] = str(index_of_gpu)
    tf.set_random_seed(5683)  # a seed value for randomness

    if len(unused_argv) != 1:
        raise Exception("Problem with flags: %s" % unused_argv)

    tf.logging.set_verbosity(tf.logging.INFO)  # choose what level of logging you want
    tf.logging.info('Starting sticker classification in %s mode...', (FLAGS.mode))

    # Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
    FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)
    if not os.path.exists(FLAGS.log_root):
        if FLAGS.mode == "train":
            os.makedirs(FLAGS.log_root)
        else:
            raise Exception("Logdir %s doesn't exist. Run in train mode to create it." % (FLAGS.log_root))

    # If single_pass=True, check we're in decode mode
    if FLAGS.single_pass and 'decode' not in FLAGS.mode:
        raise Exception("The single_pass flag should only be True in decode mode")

    ######################
    # save parameters and python script
    ######################
    export_json = {}
    for key, val in FLAGS.__flags.items():
        val = val._value
        export_json[key] = val
    # save parameters
    tf.logging.info('saving parameters')
    current_time_str = datetime.now().strftime('%m-%d-%H-%M')
    json_para_file = open(os.path.join(FLAGS.log_root, 'flags-' + current_time_str + '-' + FLAGS.mode + '.json'), 'w')
    json_para_file.write(json.dumps(export_json, indent=4) + '\n')
    json_para_file.close()
    # save python source code
    FLAGS.current_source_code_zip = os.path.abspath(os.path.join(FLAGS.log_root, 'source_code_bak-' + current_time_str + '-' + FLAGS.mode + '.zip'))
    tf.logging.info('saving source code: %s', FLAGS.current_source_code_zip)
    python_list = glob.glob('./*.py')
    zip_file = zipfile.ZipFile(FLAGS.current_source_code_zip, 'w')
    for d in python_list:
        zip_file.write(d)
    for d in glob.glob('slim/*.py'):
        zip_file.write(d)
    for d in glob.glob('models/*.py'):
        zip_file.write(d)
    zip_file.close()

    tf.set_random_seed(111)  # a seed value for randomness

    if FLAGS.mode == 'train':
        tf.logging.info("creating model...")
        model = StickerClassify()
        setup_training(model, batcher, emoji_vocab)
    elif FLAGS.mode == 'decode':
        tf.logging.info("creating model...")
        model = StickerClassify()
        run_test(model, batcher, emoji_vocab)
    else:
        raise ValueError("The 'mode' flag must be one of train/eval/decode/auto_decode")
コード例 #4
0
ファイル: predict.py プロジェクト: ljos/navnkjenner

if __name__ == '__main__':

    config = Config(
        batch_size = 1,
        char_embed_size = 25,
        conv_kernel = 3,
        depth = 1,
        dropout = 0.5,
        h_size = 256,
        learning_rate = 0.01,
        pool_size = 53
    )

    vocab = Vocab(f'etc/samnorsk.300.skipgram.bin', 'etc/gazetteer.txt')

    output_types = (tf.float32, tf.float32, tf.float32, tf.int32, tf.int32, tf.int32, tf.int32)
    output_shapes = (
        [None, vocab.n_words],      # Word embeddings for each word in the sentence
        [None, vocab.n_pos],        # one_hot encoded PoS for each word
        [None, vocab.n_categories], # NE category memberships
        [None, None],               # The characters for each word
        [None],                     # The number of characters pr word
        [None],                     # The labels for each word
        []                          # the number of words in sentence
    )


    examples = tf.data.Dataset.from_generator(
        vocab.examples(sys.argv[2]),
コード例 #5
0
               scripts_to_save=['main.py', 'model.py', 'nn_utils.py'])


def logging(s, print_=True, log_=True):
    if print_:
        print(s)
    if log_:
        with open(os.path.join(args.save, 'log.txt'), 'a+') as f_log:
            f_log.write(s + '\n')


logging('Args')
for k, v in args.__dict__.items():
    logging('    - {} : {}'.format(k, v))

vocab = Vocab('vocabv2.pkl', args.ntokens, '<unk>')


def get_file_list(filename):
    return [line.strip() for line in open(filename)]


def get_tensors(filenames, cache_file=None):
    if cache_file is not None and os.path.exists(cache_file):
        return pickle.load(open(cache_file, 'rb'))
    ret = []
    for filename in filenames:
        ret.extend(vocab.parse_file(filename))
    if cache_file is not None:
        pickle.dump(ret, open(cache_file, 'wb'))
    return ret
コード例 #6
0
def main(unused_argv):
    if len(unused_argv
           ) != 1:  # prints a message if you've entered flags incorrectly
        raise Exception("Problem with flags: %s" % unused_argv)

    if FLAGS.singles_and_pairs == 'both':
        FLAGS.exp_name = FLAGS.exp_name + '_both'
        exp_name = _exp_name + '_both'
        dataset_articles = _dataset_articles
    else:
        FLAGS.exp_name = FLAGS.exp_name + '_singles'
        exp_name = _exp_name + '_singles'
        dataset_articles = _dataset_articles + '_singles'
    my_log_dir = os.path.join(log_dir, FLAGS.ssi_exp_name)

    print('Running statistics on %s' % FLAGS.exp_name)

    if FLAGS.dataset_name != "":
        FLAGS.data_path = os.path.join(FLAGS.data_root, FLAGS.dataset_name,
                                       FLAGS.dataset_split + '*')
    if not os.path.exists(os.path.join(
            FLAGS.data_root, FLAGS.dataset_name)) or len(
                os.listdir(os.path.join(FLAGS.data_root,
                                        FLAGS.dataset_name))) == 0:
        print(('No TF example data found at %s so creating it from raw data.' %
               os.path.join(FLAGS.data_root, FLAGS.dataset_name)))
        convert_data.process_dataset(FLAGS.dataset_name)

    logging.set_verbosity(
        logging.INFO)  # choose what level of logging you want
    logging.info('Starting seq2seq_attention in %s mode...', (FLAGS.mode))

    # Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
    FLAGS.exp_name = FLAGS.exp_name if FLAGS.exp_name != '' else FLAGS.dataset_name
    FLAGS.actual_log_root = FLAGS.log_root
    FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)

    vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size)  # create a vocabulary

    # If in decode mode, set batch_size = beam_size
    # Reason: in decode mode, we decode one example at a time.
    # On each step, we have beam_size-many hypotheses in the beam, so we need to make a batch of these hypotheses.
    if FLAGS.mode == 'decode':
        FLAGS.batch_size = FLAGS.beam_size

    # If single_pass=True, check we're in decode mode
    if FLAGS.single_pass and FLAGS.mode != 'decode':
        raise Exception(
            "The single_pass flag should only be True in decode mode")

    # Make a namedtuple hps, containing the values of the hyperparameters that the model needs
    hparam_list = [
        'mode', 'lr', 'adagrad_init_acc', 'rand_unif_init_mag',
        'trunc_norm_init_std', 'max_grad_norm', 'hidden_dim', 'emb_dim',
        'batch_size', 'max_dec_steps', 'max_enc_steps', 'coverage',
        'cov_loss_wt', 'pointer_gen', 'lambdamart_input'
    ]
    hps_dict = {}
    for key, val in FLAGS.__flags.items():  # for each flag
        if key in hparam_list:  # if it's in the list
            hps_dict[key] = val.value  # add it to the dict
    hps = namedtuple("HParams", list(hps_dict.keys()))(**hps_dict)

    tf.set_random_seed(113)  # a seed value for randomness

    decode_model_hps = hps._replace(
        max_dec_steps=1
    )  # The model is configured with max_dec_steps=1 because we only ever run one step of the decoder at a time (to do beam search). Note that the batcher is initialized with max_dec_steps equal to e.g. 100 because the batches need to contain the full summaries

    if len(unused_argv
           ) != 1:  # prints a message if you've entered flags incorrectly
        raise Exception("Problem with flags: %s" % unused_argv)
    start_time = time.time()
    np.random.seed(random_seed)
    source_dir = os.path.join(data_dir, dataset_articles)
    source_files = sorted(glob.glob(source_dir + '/' + dataset_split + '*'))

    with open(os.path.join(my_log_dir, 'ssi.pkl')) as f:
        ssi_list = pickle.load(f)

    total = len(source_files
                ) * 1000 if 'cnn' or 'newsroom' in dataset_articles else len(
                    source_files)
    example_generator = data.example_generator(source_dir + '/' +
                                               dataset_split + '*',
                                               True,
                                               False,
                                               should_check_valid=False)
    # batcher = Batcher(None, vocab, hps, single_pass=FLAGS.single_pass)
    model = SummarizationModel(decode_model_hps, vocab)
    decoder = BeamSearchDecoder(model, None, vocab)
    decoder.decode_iteratively(example_generator, total, names_to_types,
                               ssi_list, hps)

    a = 0
コード例 #7
0
def main(unused_argv):
    if len(
            unused_argv) != 1:  # prints a message if you've entered flags incorrectly
        raise Exception("Problem with flags: %s" % unused_argv)
    if FLAGS.dataset_name != "":
        FLAGS.data_path = os.path.join(FLAGS.data_root, FLAGS.dataset_name,
                                       FLAGS.dataset_split + '*')
    if not os.path.exists(
            os.path.join(FLAGS.data_root, FLAGS.dataset_name)) or len(
        os.listdir(os.path.join(FLAGS.data_root, FLAGS.dataset_name))) == 0:
        print(
                'No TF example data found at %s so creating it from raw data.' % os.path.join(
            FLAGS.data_root, FLAGS.dataset_name))
        convert_data.process_dataset(FLAGS.dataset_name)

    logging.set_verbosity(logging.INFO)  # choose what level of logging you want
    logging.info('Starting seq2seq_attention in %s mode...', (FLAGS.mode))

    # Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
    FLAGS.exp_name = FLAGS.exp_name if FLAGS.exp_name != '' else FLAGS.dataset_name
    FLAGS.actual_log_root = FLAGS.log_root
    FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)

    vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size)  # create a vocabulary

    # If in decode mode, set batch_size = beam_size
    # Reason: in decode mode, we decode one example at a time.
    # On each step, we have beam_size-many hypotheses in the beam, so we need to make a batch of these hypotheses.
    if FLAGS.mode == 'decode':
        FLAGS.batch_size = FLAGS.beam_size

    # If single_pass=True, check we're in decode mode
    if FLAGS.single_pass and FLAGS.mode != 'decode':
        raise Exception(
            "The single_pass flag should only be True in decode mode")

    # Make a namedtuple hps, containing the values of the hyperparameters that the model needs
    hparam_list = ['mode', 'lr', 'adagrad_init_acc', 'rand_unif_init_mag',
                   'trunc_norm_init_std',
                   'max_grad_norm', 'hidden_dim', 'emb_dim', 'batch_size',
                   'max_dec_steps',
                   'max_enc_steps', 'coverage', 'cov_loss_wt', 'pointer_gen']
    hps_dict = {}
    for key, val in FLAGS.__flags.iteritems():  # for each flag
        if key in hparam_list:  # if it's in the list
            hps_dict[key] = val.value  # add it to the dict
    hps = namedtuple("HParams", hps_dict.keys())(**hps_dict)

    if FLAGS.pg_mmr or FLAGS.pg_mmr_sim or FLAGS.pg_mmr_diff:

        # Fit the TFIDF vectorizer if not already fitted
        if FLAGS.importance_fn == 'tfidf':
            tfidf_model_path = os.path.join(FLAGS.actual_log_root,
                                            'tfidf_vectorizer',
                                            FLAGS.dataset_name + '.dill')
            if not os.path.exists(tfidf_model_path):
                print(
                        'No TFIDF vectorizer model file found at %s, so fitting the model now.' % tfidf_model_path)
                tfidf_vectorizer = fit_tfidf_vectorizer(hps, vocab)
                with open(tfidf_model_path, 'wb') as f:
                    dill.dump(tfidf_vectorizer, f)

        # Train the SVR model on the CNN validation set if not already trained
        if FLAGS.importance_fn == 'svr':
            save_path = os.path.join(FLAGS.data_root, 'svr_training_data')
            importance_model_path = os.path.join(FLAGS.actual_log_root,
                                                 'svr.pickle')
            dataset_split = 'val'
            if not os.path.exists(importance_model_path):
                if not os.path.exists(save_path) or len(
                        os.listdir(save_path)) == 0:
                    print(
                            'No importance_feature instances found at %s so creating it from raw data.' % save_path)
                    decode_model_hps = hps._replace(
                        max_dec_steps=1, batch_size=100,
                        mode='calc_features')  # The model is configured with max_dec_steps=1 because we only ever run one step of the decoder at a time (to do beam search). Note that the batcher is initialized with max_dec_steps equal to e.g. 100 because the batches need to contain the full summaries
                    cnn_dm_train_data_path = os.path.join(FLAGS.data_root,
                                                          FLAGS.dataset_name,
                                                          dataset_split + '*')
                    batcher = Batcher(cnn_dm_train_data_path, vocab,
                                      decode_model_hps,
                                      single_pass=FLAGS.single_pass,
                                      cnn_500_dm_500=False)
                    calc_features(cnn_dm_train_data_path, decode_model_hps,
                                  vocab, batcher, save_path)

                print(
                        'No importance_feature SVR model found at %s so training it now.' % importance_model_path)
                features_list = importance_features.get_features_list(True)
                sent_reps = importance_features.load_data(
                    os.path.join(save_path, dataset_split + '*'), -1)
                print 'Loaded %d sentences representations' % len(sent_reps)
                x_y = importance_features.features_to_array(sent_reps,
                                                            features_list)
                train_x, train_y = x_y[:, :-1], x_y[:, -1]
                svr_model = importance_features.run_training(train_x, train_y)
                with open(importance_model_path, 'wb') as f:
                    cPickle.dump(svr_model, f)

    # Create a batcher object that will create minibatches of data
    batcher = Batcher(FLAGS.data_path, vocab, hps,
                      single_pass=FLAGS.single_pass)

    tf.set_random_seed(111)  # a seed value for randomness

    # Start decoding on multi-document inputs
    if hps.mode == 'decode':
        decode_model_hps = hps._replace(
            max_dec_steps=1)  # The model is configured with max_dec_steps=1 because we only ever run one step of the decoder at a time (to do beam search). Note that the batcher is initialized with max_dec_steps equal to e.g. 100 because the batches need to contain the full summaries
        model = SummarizationModel(decode_model_hps, vocab)
        decoder = BeamSearchDecoder(model, batcher, vocab)
        decoder.decode()  # decode indefinitely (unless single_pass=True, in which case deocde the dataset exactly once)
    else:
        raise ValueError("The 'mode' flag must be one of train/eval/decode")
コード例 #8
0
def main(unused_argv):
    if len(unused_argv
           ) != 1:  # prints a message if you've entered flags incorrectly
        raise Exception("Problem with flags: %s" % unused_argv)
    if FLAGS.dataset_name != "":
        FLAGS.data_path = os.path.join(FLAGS.data_root, FLAGS.dataset_name,
                                       FLAGS.dataset_split + '*')
    if not os.path.exists(os.path.join(
            FLAGS.data_root, FLAGS.dataset_name)) or len(
                os.listdir(os.path.join(FLAGS.data_root,
                                        FLAGS.dataset_name))) == 0:
        raise Exception('No TF example data found at %s.' %
                        os.path.join(FLAGS.data_root, FLAGS.dataset_name))

    if FLAGS.singles_and_pairs == 'both':
        FLAGS.exp_name = FLAGS.exp_name + '_both'
    elif FLAGS.singles_and_pairs == 'singles':
        FLAGS.exp_name = FLAGS.exp_name + '_singles'

    logging.set_verbosity(
        logging.INFO)  # choose what level of logging you want
    logging.info('Starting seq2seq_attention in %s mode...', (FLAGS.mode))

    # Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
    FLAGS.exp_name = FLAGS.exp_name if FLAGS.exp_name != '' else FLAGS.dataset_name
    FLAGS.actual_log_root = FLAGS.log_root
    FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)

    print(util.bcolors.OKGREEN + "Experiment path: " + FLAGS.log_root +
          util.bcolors.ENDC)

    if FLAGS.dataset_name == 'duc_2004':
        vocab = Vocab(FLAGS.vocab_path + '_' + 'cnn_dm',
                      FLAGS.vocab_size)  # create a vocabulary
    else:
        vocab = Vocab(FLAGS.vocab_path + '_' + FLAGS.dataset_name,
                      FLAGS.vocab_size)  # create a vocabulary

    # If in decode mode, set batch_size = beam_size
    # Reason: in decode mode, we decode one example at a time.
    # On each step, we have beam_size-many hypotheses in the beam, so we need to make a batch of these hypotheses.
    if FLAGS.mode == 'decode':
        FLAGS.batch_size = FLAGS.beam_size

    # If single_pass=True, check we're in decode mode
    if FLAGS.single_pass and FLAGS.mode != 'decode':
        raise Exception(
            "The single_pass flag should only be True in decode mode")

    # Make a namedtuple hps, containing the values of the hyperparameters that the model needs
    hparam_list = [
        item for item in list(FLAGS.flag_values_dict().keys()) if item != '?'
    ]
    hps_dict = {}
    for key, val in FLAGS.__flags.items():  # for each flag
        if key in hparam_list:  # if it's in the list
            hps_dict[key] = val.value  # add it to the dict
    hps = namedtuple("HParams", list(hps_dict.keys()))(**hps_dict)

    # Create a batcher object that will create minibatches of data
    batcher = Batcher(FLAGS.data_path,
                      vocab,
                      hps,
                      single_pass=FLAGS.single_pass)

    tf.set_random_seed(113)  # a seed value for randomness

    # Start decoding
    if hps.mode == 'train':
        print("creating model...")
        model = SummarizationModel(hps, vocab)
        setup_training(model, batcher)
    elif hps.mode == 'eval':
        model = SummarizationModel(hps, vocab)
        run_eval(model, batcher, vocab)
    elif hps.mode == 'decode':
        decode_model_hps = hps._replace(
            max_dec_steps=1
        )  # The model is configured with max_dec_steps=1 because we only ever run one step of the decoder at a time (to do beam search). Note that the batcher is initialized with max_dec_steps equal to e.g. 100 because the batches need to contain the full summaries
        model = SummarizationModel(decode_model_hps, vocab)
        decoder = BeamSearchDecoder(model, batcher, vocab)
        decoder.decode(
        )  # decode indefinitely (unless single_pass=True, in which case deocde the dataset exactly once)
    else:
        raise ValueError("The 'mode' flag must be one of train/eval/decode")
コード例 #9
0
from flask import Flask, jsonify, request
from flask import render_template

import config
from data import Vocab
from predict import build_batch_by_article
from predict import BeamSearch
model_path = "./logs/weibo_adagrad/train_20201204_215649/model/zh45000"
vocab = Vocab("./dataset/finished_files/vocab", config.vocab_size)
envocab = Vocab("./dataset/envocab", config.vocab_size)
beam_processor = BeamSearch(model_path, vocab)  # 注意需要选词汇表进行中英文摘要


def ptrnet_predict(text):
    return "ptrnet"


app = Flask(
    __name__,
    static_folder='assets',
)


@app.route('/ptrnet', methods=['POST'])
def pnpredict():
    if request.method == 'POST':
        plaintext = request.get_json()['text']
        # print(plaintext)
        try:
            batch = build_batch_by_article(plaintext, vocab)
            summary = beam_processor.decode(batch)
コード例 #10
0
ファイル: run_summarization.py プロジェクト: zxsted/RLSeq2Seq
class Seq2Seq(object):

  def calc_running_avg_loss(self, loss, running_avg_loss, step, decay=0.99):
    """Calculate the running average loss via exponential decay.
    This is used to implement early stopping w.r.t. a more smooth loss curve than the raw loss curve.

    Args:
      loss: loss on the most recent eval step
      running_avg_loss: running_avg_loss so far
      summary_writer: FileWriter object to write for tensorboard
      step: training iteration step
      decay: rate of exponential decay, a float between 0 and 1. Larger is smoother.

    Returns:
      running_avg_loss: new running average loss
    """
    if running_avg_loss == 0:  # on the first iteration just take the loss
      running_avg_loss = loss
    else:
      running_avg_loss = running_avg_loss * decay + (1 - decay) * loss
    running_avg_loss = min(running_avg_loss, 12)  # clip
    loss_sum = tf.Summary()
    tag_name = 'running_avg_loss/decay=%f' % (decay)
    loss_sum.value.add(tag=tag_name, simple_value=running_avg_loss)
    self.summary_writer.add_summary(loss_sum, step)
    tf.logging.info('running_avg_loss: %f', running_avg_loss)
    return running_avg_loss

  def restore_best_model(self):
    """Load bestmodel file from eval directory, add variables for adagrad, and save to train directory"""
    tf.logging.info("Restoring bestmodel for training...")

    # Initialize all vars in the model
    sess = tf.Session(config=util.get_config())
    print "Initializing all variables..."
    sess.run(tf.initialize_all_variables())

    # Restore the best model from eval dir
    saver = tf.train.Saver([v for v in tf.all_variables() if "Adagrad" not in v.name])
    print "Restoring all non-adagrad variables from best model in eval dir..."
    curr_ckpt = util.load_ckpt(saver, sess, "eval")
    print "Restored %s." % curr_ckpt

    # Save this model to train dir and quit
    new_model_name = curr_ckpt.split("/")[-1].replace("bestmodel", "model")
    new_fname = os.path.join(FLAGS.log_root, "train", new_model_name)
    print "Saving model to %s..." % (new_fname)
    new_saver = tf.train.Saver() # this saver saves all variables that now exist, including Adagrad variables
    new_saver.save(sess, new_fname)
    print "Saved."
    exit()

  def restore_best_eval_model(self):
    # load best evaluation loss so far
    best_loss = None
    best_step = None
    # goes through all event files and select the best loss achieved and return it
    event_files = sorted(glob('{}/eval/events*'.format(FLAGS.log_root)))
    for ef in event_files:
      try:
        for e in tf.train.summary_iterator(ef):
          for v in e.summary.value:
            step = e.step
            if 'running_avg_loss/decay' in v.tag:
              running_avg_loss = v.simple_value
              if best_loss is None or running_avg_loss < best_loss:
                best_loss = running_avg_loss
                best_step = step
      except:
        continue
    tf.logging.info('resotring best loss from the current logs: {}\tstep: {}'.format(best_loss, best_step))
    return best_loss

  def convert_to_coverage_model(self):
    """Load non-coverage checkpoint, add initialized extra variables for coverage, and save as new checkpoint"""
    tf.logging.info("converting non-coverage model to coverage model..")

    # initialize an entire coverage model from scratch
    sess = tf.Session(config=util.get_config())
    print "initializing everything..."
    sess.run(tf.global_variables_initializer())

    # load all non-coverage weights from checkpoint
    saver = tf.train.Saver([v for v in tf.global_variables() if "coverage" not in v.name and "Adagrad" not in v.name])
    print "restoring non-coverage variables..."
    curr_ckpt = util.load_ckpt(saver, sess)
    print "restored."

    # save this model and quit
    new_fname = curr_ckpt + '_cov_init'
    print "saving model to %s..." % (new_fname)
    new_saver = tf.train.Saver() # this one will save all variables that now exist
    new_saver.save(sess, new_fname)
    print "saved."
    exit()

  def convert_to_reinforce_model(self):
    """Load non-reinforce checkpoint, add initialized extra variables for reinforce, and save as new checkpoint"""
    tf.logging.info("converting non-reinforce model to reinforce model..")

    # initialize an entire reinforce model from scratch
    sess = tf.Session(config=util.get_config())
    print "initializing everything..."
    sess.run(tf.global_variables_initializer())

    # load all non-reinforce weights from checkpoint
    saver = tf.train.Saver([v for v in tf.global_variables() if "reinforce" not in v.name and "Adagrad" not in v.name])
    print "restoring non-reinforce variables..."
    curr_ckpt = util.load_ckpt(saver, sess)
    print "restored."

    # save this model and quit
    new_fname = curr_ckpt + '_rl_init'
    print "saving model to %s..." % (new_fname)
    new_saver = tf.train.Saver() # this one will save all variables that now exist
    new_saver.save(sess, new_fname)
    print "saved."
    exit()

  def setup_training(self):
    """Does setup before starting training (run_training)"""
    train_dir = os.path.join(FLAGS.log_root, "train")
    if not os.path.exists(train_dir): os.makedirs(train_dir)
    if FLAGS.ac_training:
      dqn_train_dir = os.path.join(FLAGS.log_root, "dqn", "train")
      if not os.path.exists(dqn_train_dir): os.makedirs(dqn_train_dir)
    #replaybuffer_pcl_path = os.path.join(FLAGS.log_root, "replaybuffer.pcl")
    #if not os.path.exists(dqn_target_train_dir): os.makedirs(dqn_target_train_dir)

    self.model.build_graph() # build the graph

    if FLAGS.convert_to_reinforce_model:
      assert (FLAGS.rl_training or FLAGS.ac_training), "To convert your pointer model to a reinforce model, run with convert_to_reinforce_model=True and either rl_training=True or ac_training=True"
      self.convert_to_reinforce_model()
    if FLAGS.convert_to_coverage_model:
      assert FLAGS.coverage, "To convert your non-coverage model to a coverage model, run with convert_to_coverage_model=True and coverage=True"
      self.convert_to_coverage_model()
    if FLAGS.restore_best_model:
      self.restore_best_model()
    saver = tf.train.Saver(max_to_keep=3) # keep 3 checkpoints at a time

    # Loads pre-trained word-embedding. By default the model learns the embedding.
    if FLAGS.embedding:
      self.vocab.LoadWordEmbedding(FLAGS.embedding, FLAGS.emb_dim)
      word_vector = self.vocab.getWordEmbedding()

    self.sv = tf.train.Supervisor(logdir=train_dir,
                       is_chief=True,
                       saver=saver,
                       summary_op=None,
                       save_summaries_secs=60, # save summaries for tensorboard every 60 secs
                       save_model_secs=60, # checkpoint every 60 secs
                       global_step=self.model.global_step,
                       init_feed_dict= {self.model.embedding_place:word_vector} if FLAGS.embedding else None
                       )
    self.summary_writer = self.sv.summary_writer
    self.sess = self.sv.prepare_or_wait_for_session(config=util.get_config())
    if FLAGS.ac_training:
      tf.logging.info('DDQN building graph')
      t1 = time.time()
      # We create a separate graph for DDQN
      self.dqn_graph = tf.Graph()
      with self.dqn_graph.as_default():
        self.dqn.build_graph() # build dqn graph
        tf.logging.info('building current network took {} seconds'.format(time.time()-t1))

        self.dqn_target.build_graph() # build dqn target graph
        tf.logging.info('building target network took {} seconds'.format(time.time()-t1))

        dqn_saver = tf.train.Saver(max_to_keep=3) # keep 3 checkpoints at a time
        self.dqn_sv = tf.train.Supervisor(logdir=dqn_train_dir,
                           is_chief=True,
                           saver=dqn_saver,
                           summary_op=None,
                           save_summaries_secs=60, # save summaries for tensorboard every 60 secs
                           save_model_secs=60, # checkpoint every 60 secs
                           global_step=self.dqn.global_step,
                           )
        self.dqn_summary_writer = self.dqn_sv.summary_writer
        self.dqn_sess = self.dqn_sv.prepare_or_wait_for_session(config=util.get_config())
      ''' #### TODO: try loading a previously saved replay buffer
      # right now this doesn't work due to running DQN on a thread
      if os.path.exists(replaybuffer_pcl_path):
        tf.logging.info('Loading Replay Buffer...')
        try:
          self.replay_buffer = pickle.load(open(replaybuffer_pcl_path, "rb"))
          tf.logging.info('Replay Buffer loaded...')
        except:
          tf.logging.info('Couldn\'t load Replay Buffer file...')
          self.replay_buffer = ReplayBuffer(self.dqn_hps)
      else:
        self.replay_buffer = ReplayBuffer(self.dqn_hps)
      tf.logging.info("Building DDQN took {} seconds".format(time.time()-t1))
      '''
      self.replay_buffer = ReplayBuffer(self.dqn_hps)
    tf.logging.info("Preparing or waiting for session...")
    tf.logging.info("Created session.")
    try:
      self.run_training() # this is an infinite loop until interrupted
    except (KeyboardInterrupt, SystemExit):
      tf.logging.info("Caught keyboard interrupt on worker. Stopping supervisor...")
      self.sv.stop()
      if FLAGS.ac_training:
        self.dqn_sv.stop()

  def run_training(self):
    """Repeatedly runs training iterations, logging loss to screen and writing summaries"""
    tf.logging.info("Starting run_training")

    if FLAGS.debug: # start the tensorflow debugger
      self.sess = tf_debug.LocalCLIDebugWrapperSession(self.sess)
      self.sess.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan)

    self.train_step = 0
    if FLAGS.ac_training:
      # DDQN training is done asynchronously along with model training
      tf.logging.info('Starting DQN training thread...')
      self.dqn_train_step = 0
      self.thrd_dqn_training = Thread(target=self.dqn_training)
      self.thrd_dqn_training.daemon = True
      self.thrd_dqn_training.start()

      watcher = Thread(target=self.watch_threads)
      watcher.daemon = True
      watcher.start()
    # starting the main thread
    tf.logging.info('Starting Seq2Seq training...')
    while True: # repeats until interrupted
      batch = self.batcher.next_batch()
      t0=time.time()
      if FLAGS.ac_training:
        # For DDQN, we first collect the model output to calculate the reward and Q-estimates
        # Then we fix the estimation either using our target network or using the true Q-values
        # This process will usually take time and we are working on improving it.
        transitions = self.model.collect_dqn_transitions(self.sess, batch, self.train_step, batch.max_art_oovs) # len(batch_size * k * max_dec_steps)
        tf.logging.info('Q-values collection time: {}'.format(time.time()-t0))
        # whenever we are working with the DDQN, we switch using DDQN graph rather than default graph
        with self.dqn_graph.as_default():
          batch_len = len(transitions)
          # we use current decoder state to predict q_estimates, use_state_prime = False
          b = ReplayBuffer.create_batch(self.dqn_hps, transitions,len(transitions), use_state_prime = False, max_art_oovs = batch.max_art_oovs)
          # we also get the next decoder state to correct the estimation, use_state_prime = True
          b_prime = ReplayBuffer.create_batch(self.dqn_hps, transitions,len(transitions), use_state_prime = True, max_art_oovs = batch.max_art_oovs)
          # use current DQN to estimate values from current decoder state
          dqn_results = self.dqn.run_test_steps(sess=self.dqn_sess, x= b._x, return_best_action=True)
          q_estimates = dqn_results['estimates'] # shape (len(transitions), vocab_size)
          dqn_best_action = dqn_results['best_action']
          #dqn_q_estimate_loss = dqn_results['loss']

          # use target DQN to estimate values for the next decoder state
          dqn_target_results = self.dqn_target.run_test_steps(self.dqn_sess, x= b_prime._x)
          q_vals_new_t = dqn_target_results['estimates'] # shape (len(transitions), vocab_size)

          # we need to expand the q_estimates to match the input batch max_art_oov
          # we use the q_estimate of UNK token for all the OOV tokens
          q_estimates = np.concatenate([q_estimates,
            np.reshape(q_estimates[:,0],[-1,1])*np.ones((len(transitions),batch.max_art_oovs))],axis=-1)
          # modify Q-estimates using the result collected from current and target DQN.
          # check algorithm 5 in the paper for more info: https://arxiv.org/pdf/1805.09461.pdf
          for i, tr in enumerate(transitions):
            if tr.done:
              q_estimates[i][tr.action] = tr.reward
            else:
              q_estimates[i][tr.action] = tr.reward + FLAGS.gamma * q_vals_new_t[i][dqn_best_action[i]]
          # use scheduled sampling to whether use true Q-values or DDQN estimation
          if FLAGS.dqn_scheduled_sampling:
            q_estimates = self.scheduled_sampling(batch_len, FLAGS.sampling_probability, b._y_extended, q_estimates)
          if not FLAGS.calculate_true_q:
            # when we are not training DDQN based on true Q-values,
            # we need to update Q-values in our transitions based on the q_estimates we collected from DQN current network.
            for trans, q_val in zip(transitions,q_estimates):
              trans.q_values = q_val # each have the size vocab_extended
          q_estimates = np.reshape(q_estimates, [FLAGS.batch_size, FLAGS.k, FLAGS.max_dec_steps, -1]) # shape (batch_size, k, max_dec_steps, vocab_size_extended)
        # Once we are done with modifying Q-values, we can use them to train the DDQN model.
        # In this paper, we use a priority experience buffer which always selects states with higher quality
        # to train the DDQN. The following line will add batch_size * max_dec_steps experiences to the replay buffer.
        # As mentioned before, the DDQN training is asynchronous. Therefore, once the related queues for DDQN training
        # are full, the DDQN will start the training.
        self.replay_buffer.add(transitions)
        # If dqn_pretrain flag is on, it means that we use a fixed Actor to only collect experiences for
        # DDQN pre-training
        if FLAGS.dqn_pretrain:
          tf.logging.info('RUNNNING DQN PRETRAIN: Adding data to relplay buffer only...')
          continue
        # if not, use the q_estimation to update the loss.
        results = self.model.run_train_steps(self.sess, batch, self.train_step, q_estimates)
      else:
          results = self.model.run_train_steps(self.sess, batch, self.train_step)
      t1=time.time()
      # get the summaries and iteration number so we can write summaries to tensorboard
      summaries = results['summaries'] # we will write these summaries to tensorboard using summary_writer
      self.train_step = results['global_step'] # we need this to update our running average loss
      tf.logging.info('seconds for training step {}: {}'.format(self.train_step, t1-t0))

      printer_helper = {}
      printer_helper['pgen_loss']= results['pgen_loss']
      if FLAGS.coverage:
        printer_helper['coverage_loss'] = results['coverage_loss']
        if FLAGS.rl_training or FLAGS.ac_training:
          printer_helper['rl_cov_total_loss']= results['reinforce_cov_total_loss']
        else:
          printer_helper['pointer_cov_total_loss'] = results['pointer_cov_total_loss']
      if FLAGS.rl_training or FLAGS.ac_training:
        printer_helper['shared_loss'] = results['shared_loss']
        printer_helper['rl_loss'] = results['rl_loss']
        printer_helper['rl_avg_logprobs'] = results['rl_avg_logprobs']
      if FLAGS.rl_training:
        printer_helper['sampled_r'] = np.mean(results['sampled_sentence_r_values'])
        printer_helper['greedy_r'] = np.mean(results['greedy_sentence_r_values'])
        printer_helper['r_diff'] = printer_helper['sampled_r'] - printer_helper['greedy_r']
      if FLAGS.ac_training:
        printer_helper['dqn_loss'] = np.mean(self.avg_dqn_loss) if len(self.avg_dqn_loss)>0 else 0

      for (k,v) in printer_helper.items():
        if not np.isfinite(v):
          raise Exception("{} is not finite. Stopping.".format(k))
        tf.logging.info('{}: {}\t'.format(k,v))
      tf.logging.info('-------------------------------------------')

      self.summary_writer.add_summary(summaries, self.train_step) # write the summaries
      if self.train_step % 100 == 0: # flush the summary writer every so often
        self.summary_writer.flush()
      if FLAGS.ac_training:
        self.dqn_summary_writer.flush()
      if self.train_step > FLAGS.max_iter: break

  def dqn_training(self):
    """ training the DDQN network."""
    try:
      while True:
        if self.dqn_train_step == FLAGS.dqn_pretrain_steps: raise SystemExit()
        _t = time.time()
        self.avg_dqn_loss = []
        avg_dqn_target_loss = []
        # Get a batch of size dqn_batch_size from replay buffer to train the model
        dqn_batch = self.replay_buffer.next_batch()
        if dqn_batch is None:
          tf.logging.info('replay buffer not loaded enough yet...')
          time.sleep(60)
          continue
        # Run train step for Current DQN model and collect the results
        dqn_results = self.dqn.run_train_steps(self.dqn_sess, dqn_batch)
        # Run test step for Target DQN model and collect the results and monitor the difference in loss between the two
        dqn_target_results = self.dqn_target.run_test_steps(self.dqn_sess, x=dqn_batch._x, y=dqn_batch._y, return_loss=True)
        self.dqn_train_step = dqn_results['global_step']
        self.dqn_summary_writer.add_summary(dqn_results['summaries'], self.dqn_train_step) # write the summaries
        self.avg_dqn_loss.append(dqn_results['loss'])
        avg_dqn_target_loss.append(dqn_target_results['loss'])
        self.dqn_train_step = self.dqn_train_step + 1
        tf.logging.info('seconds for training dqn model: {}'.format(time.time()-_t))
        # UPDATING TARGET DDQN NETWORK WITH CURRENT MODEL
        with self.dqn_graph.as_default():
          current_model_weights = self.dqn_sess.run([self.dqn.model_trainables])[0] # get weights of current model
          self.dqn_target.run_update_weights(self.dqn_sess, self.dqn_train_step, current_model_weights) # update target model weights with current model weights
        tf.logging.info('DQN loss at step {}: {}'.format(self.dqn_train_step, np.mean(self.avg_dqn_loss)))
        tf.logging.info('DQN Target loss at step {}: {}'.format(self.dqn_train_step, np.mean(avg_dqn_target_loss)))
        # sleeping is required if you want the keyboard interuption to work
        time.sleep(FLAGS.dqn_sleep_time)
    except (KeyboardInterrupt, SystemExit):
      tf.logging.info("Caught keyboard interrupt on worker. Stopping supervisor...")
      self.sv.stop()
      self.dqn_sv.stop()

  def watch_threads(self):
    """Watch example queue and batch queue threads and restart if dead."""
    while True:
      time.sleep(60)
      if not self.thrd_dqn_training.is_alive(): # if the thread is dead
        tf.logging.error('Found DQN Learning thread dead. Restarting.')
        self.thrd_dqn_training = Thread(target=self.dqn_training)
        self.thrd_dqn_training.daemon = True
        self.thrd_dqn_training.start()

  def run_eval(self):
    """Repeatedly runs eval iterations, logging to screen and writing summaries. Saves the model with the best loss seen so far."""
    self.model.build_graph() # build the graph
    saver = tf.train.Saver(max_to_keep=3) # we will keep 3 best checkpoints at a time
    sess = tf.Session(config=util.get_config())

    if FLAGS.embedding:
      sess.run(tf.global_variables_initializer(),feed_dict={self.model.embedding_place:self.word_vector})
    eval_dir = os.path.join(FLAGS.log_root, "eval") # make a subdir of the root dir for eval data
    bestmodel_save_path = os.path.join(eval_dir, 'bestmodel') # this is where checkpoints of best models are saved
    summary_writer = tf.summary.FileWriter(eval_dir)

    if FLAGS.ac_training:
      tf.logging.info('DDQN building graph')
      t1 = time.time()
      dqn_graph = tf.Graph()
      with dqn_graph.as_default():
        self.dqn.build_graph() # build dqn graph
        tf.logging.info('building current network took {} seconds'.format(time.time()-t1))
        self.dqn_target.build_graph() # build dqn target graph
        tf.logging.info('building target network took {} seconds'.format(time.time()-t1))
        dqn_saver = tf.train.Saver(max_to_keep=3) # keep 3 checkpoints at a time
        dqn_sess = tf.Session(config=util.get_config())
      dqn_train_step = 0
      replay_buffer = ReplayBuffer(self.dqn_hps)

    running_avg_loss = 0 # the eval job keeps a smoother, running average loss to tell it when to implement early stopping
    best_loss = self.restore_best_eval_model()  # will hold the best loss achieved so far
    train_step = 0

    while True:
      _ = util.load_ckpt(saver, sess) # load a new checkpoint
      if FLAGS.ac_training:
        _ = util.load_dqn_ckpt(dqn_saver, dqn_sess) # load a new checkpoint
      processed_batch = 0
      avg_losses = []
      # evaluate for 100 * batch_size before comparing the loss
      # we do this due to memory constraint, best to run eval on different machines with large batch size
      while processed_batch < 100*FLAGS.batch_size:
        processed_batch += FLAGS.batch_size
        batch = self.batcher.next_batch() # get the next batch
        if FLAGS.ac_training:
          t0 = time.time()
          transitions = self.model.collect_dqn_transitions(sess, batch, train_step, batch.max_art_oovs) # len(batch_size * k * max_dec_steps)
          tf.logging.info('Q values collection time: {}'.format(time.time()-t0))
          with dqn_graph.as_default():
            # if using true Q-value to train DQN network,
            # we do this as the pre-training for the DQN network to get better estimates
            batch_len = len(transitions)
            b = ReplayBuffer.create_batch(self.dqn_hps, transitions,len(transitions), use_state_prime = True, max_art_oovs = batch.max_art_oovs)
            b_prime = ReplayBuffer.create_batch(self.dqn_hps, transitions,len(transitions), use_state_prime = True, max_art_oovs = batch.max_art_oovs)
            dqn_results = self.dqn.run_test_steps(sess=dqn_sess, x= b._x, return_best_action=True)
            q_estimates = dqn_results['estimates'] # shape (len(transitions), vocab_size)
            dqn_best_action = dqn_results['best_action']

            tf.logging.info('running test step on dqn_target')
            dqn_target_results = self.dqn_target.run_test_steps(dqn_sess, x= b_prime._x)
            q_vals_new_t = dqn_target_results['estimates'] # shape (len(transitions), vocab_size)

            # we need to expand the q_estimates to match the input batch max_art_oov
            q_estimates = np.concatenate([q_estimates,np.zeros((len(transitions),batch.max_art_oovs))],axis=-1)

            tf.logging.info('fixing the action q-estimates')
            for i, tr in enumerate(transitions):
              if tr.done:
                q_estimates[i][tr.action] = tr.reward
              else:
                q_estimates[i][tr.action] = tr.reward + FLAGS.gamma * q_vals_new_t[i][dqn_best_action[i]]
            if FLAGS.dqn_scheduled_sampling:
              tf.logging.info('scheduled sampling on q-estimates')
              q_estimates = self.scheduled_sampling(batch_len, FLAGS.sampling_probability, b._y_extended, q_estimates)
            if not FLAGS.calculate_true_q:
              # when we are not training DQN based on true Q-values
              # we need to update Q-values in our transitions based on this q_estimates we collected from DQN current network.
              for trans, q_val in zip(transitions,q_estimates):
                trans.q_values = q_val # each have the size vocab_extended
            q_estimates = np.reshape(q_estimates, [FLAGS.batch_size, FLAGS.k, FLAGS.max_dec_steps, -1]) # shape (batch_size, k, max_dec_steps, vocab_size_extended)
          tf.logging.info('run eval step on seq2seq model.')
          t0=time.time()
          results = self.model.run_eval_step(sess, batch, train_step, q_estimates)
          t1=time.time()
        else:
          tf.logging.info('run eval step on seq2seq model.')
          t0=time.time()
          results = self.model.run_eval_step(sess, batch, train_step)
          t1=time.time()

        tf.logging.info('experiment: {}'.format(FLAGS.exp_name))
        tf.logging.info('processed_batch: {}, seconds for batch: {}'.format(processed_batch, t1-t0))

        printer_helper = {}
        loss = printer_helper['pgen_loss']= results['pgen_loss']
        if FLAGS.coverage:
          printer_helper['coverage_loss'] = results['coverage_loss']
          if FLAGS.rl_training or FLAGS.ac_training:
            loss = printer_helper['rl_cov_total_loss']= results['reinforce_cov_total_loss']
          else:
            loss = printer_helper['pointer_cov_total_loss'] = results['pointer_cov_total_loss']
        if FLAGS.rl_training or FLAGS.ac_training:
          printer_helper['shared_loss'] = results['shared_loss']
          printer_helper['rl_loss'] = results['rl_loss']
          printer_helper['rl_avg_logprobs'] = results['rl_avg_logprobs']

        for (k,v) in printer_helper.items():
          if not np.isfinite(v):
            raise Exception("{} is not finite. Stopping.".format(k))
          tf.logging.info('{}: {}\t'.format(k,v))

        # add summaries
        summaries = results['summaries']
        train_step = results['global_step']
        summary_writer.add_summary(summaries, train_step)

        # calculate running avg loss
        avg_losses.append(self.calc_running_avg_loss(np.asscalar(loss), running_avg_loss, summary_writer, train_step))
        tf.logging.info('-------------------------------------------')

      running_avg_loss = np.mean(avg_losses)
      tf.logging.info('==========================================')
      tf.logging.info('best_loss: {}\trunning_avg_loss: {}\t'.format(best_loss, running_avg_loss))
      tf.logging.info('==========================================')

      # If running_avg_loss is best so far, save this checkpoint (early stopping).
      # These checkpoints will appear as bestmodel-<iteration_number> in the eval dir
      if best_loss is None or running_avg_loss < best_loss:
        tf.logging.info('Found new best model with %.3f running_avg_loss. Saving to %s', running_avg_loss, bestmodel_save_path)
        saver.save(sess, bestmodel_save_path, global_step=train_step, latest_filename='checkpoint_best')
        best_loss = running_avg_loss

      # flush the summary writer every so often
      if train_step % 100 == 0:
        summary_writer.flush()
      #time.sleep(600) # run eval every 10 minute

  def main(self, unused_argv):
    if len(unused_argv) != 1: # prints a message if you've entered flags incorrectly
      raise Exception("Problem with flags: %s" % unused_argv)

    FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)
    tf.logging.set_verbosity(tf.logging.INFO) # choose what level of logging you want
    tf.logging.info('Starting seq2seq_attention in %s mode...', (FLAGS.mode))

    # Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
    flags = getattr(FLAGS,"__flags")

    if not os.path.exists(FLAGS.log_root):
      if FLAGS.mode=="train":
        os.makedirs(FLAGS.log_root)
        fw = open('{}/config.txt'.format(FLAGS.log_root),'w')
        for k,v in flags.iteritems():
          fw.write('{}\t{}\n'.format(k,v))
        fw.close()
      else:
        raise Exception("Logdir %s doesn't exist. Run in train mode to create it." % (FLAGS.log_root))

    self.vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size) # create a vocabulary

    # If in decode mode, set batch_size = beam_size
    # Reason: in decode mode, we decode one example at a time.
    # On each step, we have beam_size-many hypotheses in the beam, so we need to make a batch of these hypotheses.
    if FLAGS.mode == 'decode':
      FLAGS.batch_size = FLAGS.beam_size

    # If single_pass=True, check we're in decode mode
    if FLAGS.single_pass and FLAGS.mode!='decode':
      raise Exception("The single_pass flag should only be True in decode mode")

    # Make a namedtuple hps, containing the values of the hyperparameters that the model needs

    hparam_list = ['mode', 'lr', 'gpu_num',
    #'sampled_greedy_flag', 
    'gamma', 'eta', 
    'fixed_eta', 'reward_function', 'intradecoder', 
    'use_temporal_attention', 'ac_training','rl_training', 'matrix_attention', 'calculate_true_q',
    'enc_hidden_dim', 'dec_hidden_dim', 'k', 
    'scheduled_sampling', 'sampling_probability','fixed_sampling_probability',
    'alpha', 'hard_argmax', 'greedy_scheduled_sampling',
    'adagrad_init_acc', 'rand_unif_init_mag', 
    'trunc_norm_init_std', 'max_grad_norm', 
    'emb_dim', 'batch_size', 'max_dec_steps', 'max_enc_steps',
    'dqn_scheduled_sampling', 'dqn_sleep_time', 'E2EBackProp',
    'coverage', 'cov_loss_wt', 'pointer_gen']
    hps_dict = {}
    for key,val in flags.iteritems(): # for each flag
      if key in hparam_list: # if it's in the list
        hps_dict[key] = val # add it to the dict
    if FLAGS.ac_training:
      hps_dict.update({'dqn_input_feature_len':(FLAGS.dec_hidden_dim)})
    self.hps = namedtuple("HParams", hps_dict.keys())(**hps_dict)
    # creating all the required parameters for DDQN model.
    if FLAGS.ac_training:
      hparam_list = ['lr', 'dqn_gpu_num', 
      'dqn_layers', 
      'dqn_replay_buffer_size', 
      'dqn_batch_size', 
      'dqn_target_update',
      'dueling_net',
      'dqn_polyak_averaging',
      'dqn_sleep_time',
      'dqn_scheduled_sampling',
      'max_grad_norm']
      hps_dict = {}
      for key,val in flags.iteritems(): # for each flag
        if key in hparam_list: # if it's in the list
          hps_dict[key] = val # add it to the dict
      hps_dict.update({'dqn_input_feature_len':(FLAGS.dec_hidden_dim)})
      hps_dict.update({'vocab_size':self.vocab.size()})
      self.dqn_hps = namedtuple("HParams", hps_dict.keys())(**hps_dict)

    # Create a batcher object that will create minibatches of data
    self.batcher = Batcher(FLAGS.data_path, self.vocab, self.hps, single_pass=FLAGS.single_pass, decode_after=FLAGS.decode_after)

    tf.set_random_seed(111) # a seed value for randomness

    if self.hps.mode == 'train':
      print "creating model..."
      self.model = SummarizationModel(self.hps, self.vocab)
      if FLAGS.ac_training:
        # current DQN with paramters \Psi
        self.dqn = DQN(self.dqn_hps,'current')
        # target DQN with paramters \Psi^{\prime}
        self.dqn_target = DQN(self.dqn_hps,'target')
      self.setup_training()
    elif self.hps.mode == 'eval':
      self.model = SummarizationModel(self.hps, self.vocab)
      if FLAGS.ac_training:
        self.dqn = DQN(self.dqn_hps,'current')
        self.dqn_target = DQN(self.dqn_hps,'target')
      self.run_eval()
    elif self.hps.mode == 'decode':
      decode_model_hps = self.hps  # This will be the hyperparameters for the decoder model
      decode_model_hps = self.hps._replace(max_dec_steps=1) # The model is configured with max_dec_steps=1 because we only ever run one step of the decoder at a time (to do beam search). Note that the batcher is initialized with max_dec_steps equal to e.g. 100 because the batches need to contain the full summaries
      model = SummarizationModel(decode_model_hps, self.vocab)
      if FLAGS.ac_training:
        # We need our target DDQN network for collecting Q-estimation at each decoder step.
        dqn_target = DQN(self.dqn_hps,'target')
      else:
        dqn_target = None
      decoder = BeamSearchDecoder(model, self.batcher, self.vocab, dqn = dqn_target)
      decoder.decode() # decode indefinitely (unless single_pass=True, in which case deocde the dataset exactly once)
    else:
      raise ValueError("The 'mode' flag must be one of train/eval/decode")

  # Scheduled sampling used for either selecting true Q-estimates or the DDQN estimation
  # based on https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/ScheduledEmbeddingTrainingHelper
  def scheduled_sampling(self, batch_size, sampling_probability, true, estimate):
    with variable_scope.variable_scope("ScheduledEmbedding"):
      # Return -1s where we do not sample, and sample_ids elsewhere
      select_sampler = bernoulli.Bernoulli(probs=sampling_probability, dtype=tf.bool)
      select_sample = select_sampler.sample(sample_shape=batch_size)
      sample_ids = array_ops.where(
                  select_sample,
                  tf.range(batch_size),
                  gen_array_ops.fill([batch_size], -1))
      where_sampling = math_ops.cast(
          array_ops.where(sample_ids > -1), tf.int32)
      where_not_sampling = math_ops.cast(
          array_ops.where(sample_ids <= -1), tf.int32)
      _estimate = array_ops.gather_nd(estimate, where_sampling)
      _true = array_ops.gather_nd(true, where_not_sampling)

      base_shape = array_ops.shape(true)
      result1 = array_ops.scatter_nd(indices=where_sampling, updates=_estimate, shape=base_shape)
      result2 = array_ops.scatter_nd(indices=where_not_sampling, updates=_true, shape=base_shape)
      result = result1 + result2
      return result1 + result2
コード例 #11
0
ファイル: run_summarization.py プロジェクト: zxsted/RLSeq2Seq
  def main(self, unused_argv):
    if len(unused_argv) != 1: # prints a message if you've entered flags incorrectly
      raise Exception("Problem with flags: %s" % unused_argv)

    FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)
    tf.logging.set_verbosity(tf.logging.INFO) # choose what level of logging you want
    tf.logging.info('Starting seq2seq_attention in %s mode...', (FLAGS.mode))

    # Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
    flags = getattr(FLAGS,"__flags")

    if not os.path.exists(FLAGS.log_root):
      if FLAGS.mode=="train":
        os.makedirs(FLAGS.log_root)
        fw = open('{}/config.txt'.format(FLAGS.log_root),'w')
        for k,v in flags.iteritems():
          fw.write('{}\t{}\n'.format(k,v))
        fw.close()
      else:
        raise Exception("Logdir %s doesn't exist. Run in train mode to create it." % (FLAGS.log_root))

    self.vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size) # create a vocabulary

    # If in decode mode, set batch_size = beam_size
    # Reason: in decode mode, we decode one example at a time.
    # On each step, we have beam_size-many hypotheses in the beam, so we need to make a batch of these hypotheses.
    if FLAGS.mode == 'decode':
      FLAGS.batch_size = FLAGS.beam_size

    # If single_pass=True, check we're in decode mode
    if FLAGS.single_pass and FLAGS.mode!='decode':
      raise Exception("The single_pass flag should only be True in decode mode")

    # Make a namedtuple hps, containing the values of the hyperparameters that the model needs

    hparam_list = ['mode', 'lr', 'gpu_num',
    #'sampled_greedy_flag', 
    'gamma', 'eta', 
    'fixed_eta', 'reward_function', 'intradecoder', 
    'use_temporal_attention', 'ac_training','rl_training', 'matrix_attention', 'calculate_true_q',
    'enc_hidden_dim', 'dec_hidden_dim', 'k', 
    'scheduled_sampling', 'sampling_probability','fixed_sampling_probability',
    'alpha', 'hard_argmax', 'greedy_scheduled_sampling',
    'adagrad_init_acc', 'rand_unif_init_mag', 
    'trunc_norm_init_std', 'max_grad_norm', 
    'emb_dim', 'batch_size', 'max_dec_steps', 'max_enc_steps',
    'dqn_scheduled_sampling', 'dqn_sleep_time', 'E2EBackProp',
    'coverage', 'cov_loss_wt', 'pointer_gen']
    hps_dict = {}
    for key,val in flags.iteritems(): # for each flag
      if key in hparam_list: # if it's in the list
        hps_dict[key] = val # add it to the dict
    if FLAGS.ac_training:
      hps_dict.update({'dqn_input_feature_len':(FLAGS.dec_hidden_dim)})
    self.hps = namedtuple("HParams", hps_dict.keys())(**hps_dict)
    # creating all the required parameters for DDQN model.
    if FLAGS.ac_training:
      hparam_list = ['lr', 'dqn_gpu_num', 
      'dqn_layers', 
      'dqn_replay_buffer_size', 
      'dqn_batch_size', 
      'dqn_target_update',
      'dueling_net',
      'dqn_polyak_averaging',
      'dqn_sleep_time',
      'dqn_scheduled_sampling',
      'max_grad_norm']
      hps_dict = {}
      for key,val in flags.iteritems(): # for each flag
        if key in hparam_list: # if it's in the list
          hps_dict[key] = val # add it to the dict
      hps_dict.update({'dqn_input_feature_len':(FLAGS.dec_hidden_dim)})
      hps_dict.update({'vocab_size':self.vocab.size()})
      self.dqn_hps = namedtuple("HParams", hps_dict.keys())(**hps_dict)

    # Create a batcher object that will create minibatches of data
    self.batcher = Batcher(FLAGS.data_path, self.vocab, self.hps, single_pass=FLAGS.single_pass, decode_after=FLAGS.decode_after)

    tf.set_random_seed(111) # a seed value for randomness

    if self.hps.mode == 'train':
      print "creating model..."
      self.model = SummarizationModel(self.hps, self.vocab)
      if FLAGS.ac_training:
        # current DQN with paramters \Psi
        self.dqn = DQN(self.dqn_hps,'current')
        # target DQN with paramters \Psi^{\prime}
        self.dqn_target = DQN(self.dqn_hps,'target')
      self.setup_training()
    elif self.hps.mode == 'eval':
      self.model = SummarizationModel(self.hps, self.vocab)
      if FLAGS.ac_training:
        self.dqn = DQN(self.dqn_hps,'current')
        self.dqn_target = DQN(self.dqn_hps,'target')
      self.run_eval()
    elif self.hps.mode == 'decode':
      decode_model_hps = self.hps  # This will be the hyperparameters for the decoder model
      decode_model_hps = self.hps._replace(max_dec_steps=1) # The model is configured with max_dec_steps=1 because we only ever run one step of the decoder at a time (to do beam search). Note that the batcher is initialized with max_dec_steps equal to e.g. 100 because the batches need to contain the full summaries
      model = SummarizationModel(decode_model_hps, self.vocab)
      if FLAGS.ac_training:
        # We need our target DDQN network for collecting Q-estimation at each decoder step.
        dqn_target = DQN(self.dqn_hps,'target')
      else:
        dqn_target = None
      decoder = BeamSearchDecoder(model, self.batcher, self.vocab, dqn = dqn_target)
      decoder.decode() # decode indefinitely (unless single_pass=True, in which case deocde the dataset exactly once)
    else:
      raise ValueError("The 'mode' flag must be one of train/eval/decode")
コード例 #12
0
    parser.add_argument('--load_path', type=str)
    parser.add_argument('--test_data', type=str)
    parser.add_argument('--test_batch_size', type=int)
    parser.add_argument('--beam_size', type= int)
    parser.add_argument('--max_time_step', type=int)
    parser.add_argument('--output_file', type = str)
    parser.add_argument('--verbose', action='store_true')
    return parser.parse_args()

if __name__ == "__main__":

    args = parse_config()
    ckpt = torch.load(args.load_path)
    model_args = ckpt['args']

    vocab_src = Vocab(model_args.vocab_src, with_SE = False)
    vocab_tgt = Vocab(model_args.vocab_tgt, with_SE = True)

    model = ResponseGenerator(vocab_src, vocab_tgt, model_args.embed_dim, model_args.hidden_size, model_args.num_layers, model_args.dropout, model_args.input_feed)

    model.load_state_dict(ckpt['model'])
    model = model.cuda()
    test_data = DataLoader(args.test_data, vocab_src, vocab_tgt, args.test_batch_size, False)

    model.eval()

    if args.verbose:
        queries = [ x.strip().split('|')[0] for x in open(args.test_data).readlines()]
        qid = 0
    with open(args.output_file, 'w') as fo:
        for batch_dict in test_data:
コード例 #13
0
class BeamSearch(object):
    def __init__(self, model_file_path):
        model_name = os.path.basename(model_file_path)
        self._decode_dir = os.path.join(config.log_root,
                                        'decode_%s' % (model_name))
        self._rouge_ref_dir = os.path.join(self._decode_dir, 'rouge_ref')
        self._rouge_dec_dir = os.path.join(self._decode_dir, 'rouge_dec_dir')
        # 创建3个目录
        for p in [self._decode_dir, self._rouge_ref_dir, self._rouge_dec_dir]:
            if not os.path.exists(p):
                os.mkdir(p)

        self.vocab = Vocab(config.vocab_path, config.vocab_size)
        self.batcher = Batcher(config.decode_data_path,
                               self.vocab,
                               mode='decode',
                               batch_size=config.beam_size,
                               single_pass=True)
        time.sleep(15)

        self.model = Model(model_file_path, is_eval=True)

    def sort_beams(self, beams):
        return sorted(beams, key=lambda h: h.avg_log_prob, reverse=True)

    def decode(self):
        start = time.time()
        counter = 0
        batch = self.batcher.next_batch()
        while batch is not None:
            # Run beam search to get best Hypothesis
            best_summary = self.beam_search(batch)

            # Extract the output ids from the hypothesis and convert back to words
            output_ids = [int(t) for t in best_summary.tokens[1:]]
            decoded_words = data.outputids2words(
                output_ids, self.vocab,
                (batch.art_oovs[0] if config.pointer_gen else None))

            # Remove the [STOP] token from decoded_words, if necessary
            try:
                fst_stop_idx = decoded_words.index(data.STOP_DECODING)
                decoded_words = decoded_words[:fst_stop_idx]
            except ValueError:
                decoded_words = decoded_words

            original_abstract_sents = batch.original_abstracts_sents[0]

            write_for_rouge(original_abstract_sents, decoded_words, counter,
                            self._rouge_ref_dir, self._rouge_dec_dir)
            counter += 1
            if counter % 1000 == 0:
                print('%d example in %d sec' % (counter, time.time() - start))
                start = time.time()

            batch = self.batcher.next_batch()

        print("Decoder has finished reading dataset for single_pass.")
        print("Now starting ROUGE eval...")
        results_dict = rouge_eval(self._rouge_ref_dir, self._rouge_dec_dir)
        rouge_log(results_dict, self._decode_dir)

    def beam_search(self, batch):
        # batch should have only one example
        enc_batch, enc_padding_mask, enc_lens, enc_batch_extend_vocab, extra_zeros, c_t_0, coverage_t_0 = \
            get_input_from_batch(batch)

        encoder_outputs, encoder_feature, encoder_hidden = self.model.encoder(
            enc_batch, enc_lens)
        s_t_0 = self.model.reduce_state(encoder_hidden)

        dec_h, dec_c = s_t_0  # 1 x 2*hidden_size
        dec_h = dec_h.squeeze()
        dec_c = dec_c.squeeze()

        # decoder batch preparation, it has beam_size example initially everything is repeated
        beams = [
            Beam(tokens=[self.vocab.word2id(data.START_DECODING)],
                 log_probs=[0.0],
                 state=(dec_h[0], dec_c[0]),
                 context=c_t_0[0],
                 coverage=(coverage_t_0[0] if config.is_coverage else None))
            for _ in range(config.beam_size)
        ]
        results = []
        steps = 0
        while steps < config.max_dec_steps and len(results) < config.beam_size:
            latest_tokens = [h.latest_token for h in beams]
            latest_tokens = [t if t < self.vocab.size() else self.vocab.word2id(data.UNKNOWN_TOKEN) \
                             for t in latest_tokens]
            y_t_1 = Variable(torch.LongTensor(latest_tokens))
            if USE_CUDA:
                y_t_1 = y_t_1.to(DEVICE)
            all_state_h = []
            all_state_c = []

            all_context = []

            for h in beams:
                state_h, state_c = h.state
                all_state_h.append(state_h)
                all_state_c.append(state_c)

                all_context.append(h.context)

            s_t_1 = (torch.stack(all_state_h,
                                 0).unsqueeze(0), torch.stack(all_state_c,
                                                              0).unsqueeze(0))
            c_t_1 = torch.stack(all_context, 0)

            coverage_t_1 = None
            if config.is_coverage:
                all_coverage = []
                for h in beams:
                    all_coverage.append(h.coverage)
                coverage_t_1 = torch.stack(all_coverage, 0)

            final_dist, s_t, c_t, attn_dist, p_gen, coverage_t = self.model.decoder(
                y_t_1, s_t_1, encoder_outputs, encoder_feature,
                enc_padding_mask, c_t_1, extra_zeros, enc_batch_extend_vocab,
                coverage_t_1, steps)
            log_probs = torch.log(final_dist)
            topk_log_probs, topk_ids = torch.topk(log_probs,
                                                  config.beam_size * 2)

            dec_h, dec_c = s_t
            dec_h = dec_h.squeeze()
            dec_c = dec_c.squeeze()

            all_beams = []
            num_orig_beams = 1 if steps == 0 else len(beams)
            for i in range(num_orig_beams):
                h = beams[i]
                state_i = (dec_h[i], dec_c[i])
                context_i = c_t[i]
                coverage_i = (coverage_t[i] if config.is_coverage else None)

                for j in range(config.beam_size *
                               2):  # for each of the top 2*beam_size hyps:
                    new_beam = h.extend(token=topk_ids[i, j].item(),
                                        log_prob=topk_log_probs[i, j].item(),
                                        state=state_i,
                                        context=context_i,
                                        coverage=coverage_i)
                    all_beams.append(new_beam)

            beams = []
            for h in self.sort_beams(all_beams):
                if h.latest_token == self.vocab.word2id(data.STOP_DECODING):
                    if steps >= config.min_dec_steps:
                        results.append(h)
                else:
                    beams.append(h)
                if len(beams) == config.beam_size or len(
                        results) == config.beam_size:
                    break

            steps += 1

        if len(results) == 0:
            results = beams

        beams_sorted = self.sort_beams(results)

        return beams_sorted[0]
コード例 #14
0
import sys
from data import Vocab

vocab_tgt = Vocab('../data/golden/vocab_tgt')

with open(sys.argv[1]) as f:
    for line in f.readlines():
        x = line.strip().split('|')
        y = x[-1]
        z = [int(t) for t in y.split()]
        iszero = False
        new_z = []
        for w in z:
            if iszero and w == 0:
                continue
            else:
                new_z.append(w)
            iszero = (w == 0)
        print(' '.join([vocab_tgt.i2s(w) for w in new_z]))
コード例 #15
0
def main(unused_argv):
    if len(unused_argv
           ) != 1:  # prints a message if you've entered flags incorrectly
        raise Exception("Problem with flags: %s" % unused_argv)

    tf.logging.set_verbosity(
        tf.logging.INFO)  # choose what level of logging you want
    tf.logging.info('Starting seq2seq_attention in %s mode...', (FLAGS.mode))

    FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)
    if not os.path.exists(FLAGS.log_root):
        if FLAGS.mode == "train":
            os.makedirs(FLAGS.log_root)
        else:
            raise Exception(
                "Logdir %s doesn't exist. Run in train mode to create it." %
                (FLAGS.log_root))

    vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size)  # create a vocabulary

    if FLAGS.mode == 'decode':
        FLAGS.batch_size = FLAGS.beam_size

    # If single_pass=True, check we're in decode mode
    if FLAGS.single_pass and FLAGS.mode != 'decode':
        raise Exception(
            "The single_pass flag should only be True in decode mode")

    # Make a namedtuple hps, containing the values of the hyperparameters that the model needs
    hps_dict = {
        'mode': FLAGS.mode,
        'rand_unif_init_mag': FLAGS.rand_unif_init_mag,
        'trunc_norm_init_std': FLAGS.trunc_norm_init_std,
        'max_grad_norm': FLAGS.max_grad_norm,
        'hidden_dim': FLAGS.hidden_dim,
        'emb_dim': FLAGS.emb_dim,
        'batch_size': FLAGS.batch_size,
        'max_dec_steps': FLAGS.max_dec_steps,
        'max_enc_steps': FLAGS.max_enc_steps,
        'pointer_gen': FLAGS.pointer_gen,
        'lr': FLAGS.lr,
        'keep_prob': FLAGS.keep_prob
    }

    hps = namedtuple("HParams", hps_dict.keys())(**hps_dict)
    batcher = Batcher(FLAGS.data_path,
                      vocab,
                      hps,
                      single_pass=FLAGS.single_pass)
    eval_batcher = Batcher('eval', vocab, hps, single_pass=False)

    tf.set_random_seed(111)  # a seed value for randomness

    if hps.mode == 'train':
        print("creating model...")
        model = MultiRelationModel(hps, vocab)
        setup_training(model, batcher, eval_batcher)
    elif hps.mode == 'eval':
        model = MultiRelationModel(hps, vocab)
        run_eval(model, batcher)
    elif hps.mode == 'decode':
        # decode_model_hps = hps  # This will be the hyperparameters for the decoder model
        decode_model_hps = hps._replace(
            max_dec_steps=1
        )  # The model is configured with max_dec_steps=1 because we only ever run one step of the decoder at a time (to do beam search). Note that the batcher is initialized with max_dec_steps equal to e.g. 100 because the batches need to contain the full summaries
        model = MultiRelationModel(decode_model_hps, vocab)
        decoder = BeamSearchDecoder(model, batcher, vocab)
        decoder.decode(
        )  # decode indefinitely (unless single_pass=True, in which case deocde the dataset exactly once)
    else:
        raise ValueError("The 'mode' flag must be one of train/eval/decode")
コード例 #16
0
    parser.add_argument('--train_data', type=str)
    parser.add_argument('--dev_data', type=str)
    parser.add_argument('--which_ranker', type=str)
    return parser.parse_args()


def update_lr(optimizer, coefficient):
    for param_group in optimizer.param_groups:
        param_group['lr'] = param_group['lr'] * coefficient


if __name__ == "__main__":
    random.seed(19940117)
    torch.manual_seed(19940117)
    args = parse_config()
    vocab_src = Vocab(args.vocab_src, with_SE=False)
    vocab_tgt = Vocab(args.vocab_tgt, with_SE=False)

    if args.which_ranker == 'ranker':
        from ranker import Ranker
    elif args.which_ranker == 'masker_ranker':
        from masker_ranker import Ranker
    model = Ranker(vocab_src, vocab_tgt, args.embed_dim, args.ff_embed_dim,
                   args.num_heads, args.dropout, args.num_layers)
    model = model.cuda()
    optimizer = torch.optim.Adam(model.parameters(), args.lr)

    train_data = DataLoader(args.train_data, vocab_src, vocab_tgt,
                            args.train_batch_size, True)
    dev_data = DataLoader(args.dev_data, vocab_src, vocab_tgt,
                          args.dev_batch_size, True)
コード例 #17
0
def main(unused_argv):
    if len(unused_argv
           ) != 1:  # prints a message if you've entered flags incorrectly
        raise Exception("Problem with flags: %s" % unused_argv)

    # Loading the external information first
    extra_info = {}
    if os.path.exists(FLAGS.external_config):
        external_params = xml_parser.parse(FLAGS.external_config, flat=False)

        if 'sent2vec_params' in external_params:
            sent2vec_params = external_params['sent2vec_params']
            convnet_params = sent2vec_params['convnet_params']
            convnet_model2load = sent2vec_params['model2load']

            gamma = 0.2 if not 'gamma' in sent2vec_params else sent2vec_params[
                'gamma']

            my_convnet = convnet.convnet(convnet_params)
            my_convnet.train_validate_test_init()
            my_convnet.load_params(file2load=convnet_model2load)

            fixed_vars = tf.global_variables()
            fixed_vars.remove(my_convnet.embedding_matrix)

            extra_info['sent2vec'] = {'gamma': gamma, 'network': my_convnet}
            extra_info['fixed_vars'] = fixed_vars

        if 'key_phrases' in external_params:
            # TODO: phrase some parameters to import the results of key-phrase extracted or \
            # parameters for online key-phrase extraction
            extra_info['key_phrases'] = {}
            raise NotImplementedError(
                'Key phrases part has not been implemented yet')

    tf.logging.set_verbosity(
        tf.logging.INFO)  # choose what level of logging you want
    tf.logging.info('Starting seq2seq_attention in %s mode...', (FLAGS.mode))

    # Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
    FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)
    if not os.path.exists(FLAGS.log_root):
        if FLAGS.mode == "train":
            os.makedirs(FLAGS.log_root)
        else:
            raise Exception(
                "Logdir %s doesn't exist. Run in train mode to create it." %
                (FLAGS.log_root))

    vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size)  # create a vocabulary

    # If in decode mode, set batch_size = beam_size
    # Reason: in decode mode, we decode one example at a time.
    # On each step, we have beam_size-many hypotheses in the beam, so we need to make a batch of these hypotheses.
    if FLAGS.mode == 'decode':
        FLAGS.batch_size = FLAGS.beam_size

    # Make a namedtuple hps, containing the values of the hyperparameters that the model needs
    hparam_list = [
        'mode', 'lr', 'adagrad_init_acc', 'rand_unif_init_mag',
        'trunc_norm_init_std', 'max_grad_norm', 'hidden_dim', 'emb_dim',
        'batch_size', 'max_dec_steps', 'max_enc_steps', 'coverage',
        'cov_loss_wt', 'pointer_gen'
    ]
    hps_dict = {}
    for key, val in FLAGS.__flags.iteritems():  # for each flag
        if key in hparam_list:  # if it's in the list
            hps_dict[key] = val  # add it to the dict
    hps = namedtuple("HParams", hps_dict.keys())(**hps_dict)

    # Create a batcher object that will create minibatches of data
    batcher = Batcher(FLAGS.data_path,
                      vocab,
                      hps,
                      single_pass=FLAGS.single_pass)

    tf.set_random_seed(111)  # a seed value for randomness

    if hps.mode == 'train':
        print "creating model..."
        model = SummarizationModel(hps, vocab, extra_info)
        setup_training(model, batcher)
    elif hps.mode == 'eval':
        model = SummarizationModel(hps, vocab, extra_info)
        run_eval(model, batcher, vocab)
    elif hps.mode == 'decode':
        decode_model_hps = hps  # This will be the hyperparameters for the decoder model
        decode_model_hps = hps._replace(
            max_dec_steps=1
        )  # The model is configured with max_dec_steps=1 because we only ever run one step of the decoder at a time (to do beam search). Note that the batcher is initialized with max_dec_steps equal to e.g. 100 because the batches need to contain the full summaries
        model = SummarizationModel(decode_model_hps, vocab, extra_info)
        decoder = BeamSearchDecoder(model, batcher, vocab)
        decoder.decode(
        )  # decode indefinitely (unless single_pass=True, in which case deocde the dataset exactly once)
    else:
        raise ValueError("The 'mode' flag must be one of train/eval/decode")
コード例 #18
0
ファイル: main.py プロジェクト: ZhichaoOuyang/IAEA
def main(unused_argv):
    if len(unused_argv
           ) != 1:  # prints a message if you've entered flags incorrectly
        raise Exception("Problem with flags: %s" % unused_argv)

    pp = pprint.PrettyPrinter()
    pp.pprint(FLAGS.__flags)

    tf.logging.set_verbosity(
        tf.logging.INFO)  # choose what level of logging you want
    if FLAGS.model not in ['selector', 'rewriter', 'end2end']:
        raise ValueError(
            "The 'model' flag must be one of selector/rewriter/end2end")
    if FLAGS.mode not in ['train', 'eval', 'evalall']:
        raise ValueError("The 'mode' flag must be one of train/eval/evalall")
    tf.logging.info('Starting %s in %s mode...' % (FLAGS.model, FLAGS.mode))  #

    # Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
    FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.model,
                                  FLAGS.exp_name)  # abstractor save path
    if not os.path.exists(FLAGS.log_root):
        if FLAGS.mode == "train":
            os.makedirs(FLAGS.log_root)
        else:
            raise Exception(
                "Logdir %s doesn't exist. Run in train mode to create it." %
                (FLAGS.log_root))

    vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size)  # create a vocabulary

    # If in evalall mode, set batch_size = 1 or beam_size
    # Reason: in evalall mode, we decode one example at a time.
    # For rewriter, on each step, we have beam_size-many hypotheses in the beam,
    # so we need to make a batch of these hypotheses.
    if FLAGS.mode == 'evalall':
        if FLAGS.model == 'selector':
            FLAGS.batch_size = 1
        else:
            if FLAGS.decode_method == 'beam':
                FLAGS.batch_size = FLAGS.beam_size

    # If single_pass=True, check we're in evalall mode
    if FLAGS.single_pass and FLAGS.mode == 'train':
        raise Exception(
            "The single_pass flag should not be True in train mode")

    # Make a namedtuple hps, containing the values of the hyperparameters that the model needs
    hparam_list = [
        'model', 'mode', 'eval_method', 'selector_loss_wt',
        'inconsistent_loss', 'inconsistent_topk', 'lr', 'adagrad_init_acc',
        'rand_unif_init_mag', 'trunc_norm_init_std', 'max_grad_norm',
        'hidden_dim_selector', 'hidden_dim_rewriter', 'emb_dim', 'batch_size',
        'max_art_len', 'max_sent_len', 'max_dec_steps', 'max_enc_steps',
        'coverage', 'cov_loss_wt', 'eval_gt_rouge', 'decode_method', 'lr',
        'gamma', 'eta', 'fixed_eta', 'reward_function', 'intradecoder',
        'use_temporal_attention', 'rl_training', 'matrix_attention',
        'pointer_gen', 'alpha', 'hard_argmax', 'greedy_scheduled_sampling',
        'k', 'calculate_true_q', 'dqn_scheduled_sampling', 'dqn_sleep_time',
        'E2EBackProp', 'gpu_num', 'enc_hidden_dim', 'dec_hidden_dim',
        'scheduled_sampling', 'sampling_probability',
        'fixed_sampling_probability', 'hard_argmax',
        'greedy_scheduled_sampling', 'dqn_scheduled_sampling',
        'dqn_sleep_time', 'E2EBackProp', 'ac_training'
    ]
    hps_dict = {}
    for key, val in FLAGS.__flags.items():  # for each flag
        if key in hparam_list:  # if it's in the list
            hps_dict[key] = val  # add it to the dict
    # for val in FLAGS:
    #   if val in hparam_list:
    #     hps_dict[val] = FLAGS[val].value
    hps = namedtuple("HParams", hps_dict.keys())(**hps_dict)

    # Create a batcher object that will create minibatches of data
    batcher = Batcher(FLAGS.data_path,
                      vocab,
                      hps,
                      single_pass=FLAGS.single_pass)

    tf.set_random_seed(111)  # a seed value for randomness
    vocab.LoadWordEmbedding(FLAGS.embedding, FLAGS.emb_dim)
    start = time.perf_counter()
    if FLAGS.model == 'selector':  # extractor
        print(hps.mode)
        if hps.mode == 'train':  # train
            print("creating model...")
            model = SentenceSelector(hps, vocab)  # init
            run_selector.setup_training(model, batcher,
                                        vocab.getWordEmbedding())
        elif hps.mode == 'eval':  # evaluation
            model = SentenceSelector(hps, vocab)
            run_selector.run_eval(model, batcher, vocab.getWordEmbedding())
        elif hps.mode == 'evalall':  # test , get rouge and output
            model = SentenceSelector(hps, vocab)
            evaluator = SelectorEvaluator(model, batcher, vocab)
            evaluator.evaluate()
    elif FLAGS.model == 'rewriter':  # abstractor
        if hps.mode == 'train':
            print("creating model...")
            model = Rewriter(hps, vocab)
            run_rewriter.setup_training(model, batcher,
                                        vocab.getWordEmbedding())
        elif hps.mode == 'eval':
            model = Rewriter(hps, vocab)
            if FLAGS.eval_method == 'loss':
                vocab.LoadWordEmbedding(FLAGS.embedding, FLAGS.emb_dim)
                run_rewriter.run_eval(model, batcher, vocab.getWordEmbedding())
            elif FLAGS.eval_method == 'rouge':
                assert FLAGS.decode_method == 'greedy'
                decoder = BeamSearchDecoder(model, batcher, vocab)
                run_rewriter.run_eval_rouge(decoder)
        elif hps.mode == 'evalall':
            decode_model_hps = hps  # This will be the hyperparameters for the decoder model
            if FLAGS.decode_method == 'beam':
                decode_model_hps = hps._replace(
                    max_dec_steps=1
                )  # The model is configured with max_dec_steps=1 because we only ever run one step of the decoder at a time (to do beam search). Note that the batcher is initialized with max_dec_steps equal to e.g. 100 because the batches need to contain the full summaries
            model = Rewriter(decode_model_hps, vocab)
            decoder = BeamSearchDecoder(model, batcher, vocab)
            decoder.evaluate(
            )  # decode indefinitely (unless single_pass=True, in which case deocde the dataset exactly once)
    elif FLAGS.model == 'end2end':  # end2end
        if hps.mode == 'train':
            print("creating model...")
            select_model = SentenceSelector(hps, vocab)  # extractor init
            rewrite_model = Rewriter(hps, vocab)  # abstractor init
            end2end_model = SelectorRewriter(hps, select_model,
                                             rewrite_model)  # end2end init
            run_end2end.setup_training(
                end2end_model, batcher,
                vocab.getWordEmbedding())  # train setting
        elif hps.mode == 'eval':
            select_model = SentenceSelector(hps, vocab)
            rewrite_model = Rewriter(hps, vocab)
            end2end_model = SelectorRewriter(hps, select_model, rewrite_model)
            if FLAGS.eval_method == 'loss':
                run_end2end.run_eval(end2end_model, batcher,
                                     vocab.getWordEmbedding())
            elif FLAGS.eval_method == 'rouge':
                assert FLAGS.decode_method == 'greedy'
                evaluator = End2EndEvaluator(end2end_model, batcher, vocab)
                run_end2end.run_eval_rouge(evaluator)
        elif hps.mode == 'evalall':
            eval_model_hps = hps  # This will be the hyperparameters for the decoder model
            if FLAGS.decode_method == 'beam':
                eval_model_hps = hps._replace(
                    max_dec_steps=1
                )  # The model is configured with max_dec_steps=1 because we only ever run one step of the decoder at a time (to do beam search). Note that the batcher is initialized with max_dec_steps equal to e.g. 100 because the batches need to contain the full summaries
            select_model = SentenceSelector(eval_model_hps, vocab)
            rewrite_model = Rewriter(eval_model_hps, vocab)
            end2end_model = SelectorRewriter(hps, select_model, rewrite_model)
            evaluator = End2EndEvaluator(end2end_model, batcher, vocab)
            evaluator.evaluate(
            )  # decode indefinitely (unless single_pass=True, in which case deocde the dataset exactly once)
    delta = time.perf_counter() - start
    print("running time: {} seconds".format(delta))
コード例 #19
0
ファイル: main.py プロジェクト: zhangyics/SMAE
def main(unused_argv):
    if len(unused_argv
           ) != 1:  # prints a message if you've entered flags incorrectly
        raise Exception("Problem with flags: %s" % unused_argv)

    tf.logging.set_verbosity(
        tf.logging.INFO)  # choose what level of logging you want
    tf.logging.info('Starting running in %s mode...', (FLAGS.mode))

    # Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
    FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)
    if not os.path.exists(FLAGS.log_root):
        if FLAGS.mode == "train":
            os.makedirs(FLAGS.log_root)
        else:
            raise Exception(
                "Logdir %s doesn't exist. Run in train mode to create it." %
                (FLAGS.log_root))

    vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size)  # create a vocabulary

    tf.set_random_seed(6)  # a seed value for randomness

    cnn_classifier = CNN(config)
    #cnn_batcher = ClaBatcher(hps_discriminator, vocab)
    cnn_batcher = ClaBatcher(FLAGS, vocab)
    sess_cnn, saver_cnn, train_dir_cnn = setup_training_classifier(
        cnn_classifier)
    run_train_cnn_classifier(cnn_classifier, cnn_batcher, 10, sess_cnn,
                             saver_cnn, train_dir_cnn)
    #util.load_ckpt(saver_cnn, sess_cnn, ckpt_dir="train-classifier")
    acc = run_test_classification(cnn_classifier, cnn_batcher, sess_cnn,
                                  saver_cnn, str('last'))
    print("the last stored cnn model acc = ", acc)
    generate_confident_examples(cnn_classifier, cnn_batcher,
                                sess_cnn)  ## train_conf

    print("Start pre-training attention classification......")
    model_class = Classification(FLAGS, vocab)
    cla_batcher = AttenBatcher(FLAGS, vocab)  # read from train_conf
    sess_cls, saver_cls, train_dir_cls = setup_training_classification(
        model_class)
    run_pre_train_classification(model_class, cla_batcher, 10, sess_cls,
                                 saver_cls, train_dir_cls)
    #util.load_ckpt(saver_cls, sess_cls, ckpt_dir="train-classification")
    acc = run_test_classification(model_class, cla_batcher, sess_cls,
                                  saver_cls, str("final_acc"))
    print("the last stored attention model acc = ", acc)
    acc = run_test_classification(cnn_classifier, cla_batcher, sess_cnn,
                                  saver_cnn, str("final_acc"))
    print("the last stored classifier model acc = ", acc)
    generated = Generate_training_sample(model_class, vocab, cla_batcher,
                                         sess_cls)

    print("Generating training examples......")
    generated.generate_training_example("train_filtered")  #wirte train
    generated.generator_validation_example("valid_filtered")

    model = Seq2seq_AE(FLAGS, vocab)
    # Create a batcher object that will create minibatches of data
    batcher = GenBatcher(vocab, FLAGS)  ##read from train

    sess_ge, saver_ge, train_dir_ge = setup_training_generator(model)

    generated = Generated_sample(model, vocab, batcher, sess_ge)
    print("Start training generator......")
    run_pre_train_auto_encoder(model, batcher, 20, sess_ge, saver_ge,
                               train_dir_ge, generated, cnn_classifier,
                               sess_cnn, cla_batcher)
コード例 #20
0
def main(unused_argv):
    print("unused_argv: ", unused_argv)
    if len(unused_argv
           ) != 1:  # prints a message if you've entered flags incorrectly
        raise Exception("Problem with flags: %s" % unused_argv)

    tf.logging.set_verbosity(
        tf.logging.INFO)  # choose what level of logging you want
    tf.logging.info('Starting seq2seq_attention in %s mode...', (FLAGS.mode))

    # Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
    FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)
    if not os.path.exists(FLAGS.log_root):
        if FLAGS.mode == "train":
            os.makedirs(FLAGS.log_root)
        else:
            raise Exception(
                "Logdir %s doesn't exist. Run in train mode to create it." %
                (FLAGS.log_root))
    print("FLAGS.vocab_size: ", FLAGS.vocab_size)
    vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size)  # create a vocabulary
    print("vocab size: ", vocab.size())
    # If in decode mode, set batch_size = beam_size
    # Reason: in decode mode, we decode one example at a time.
    # On each step, we have beam_size-many hypotheses in the beam, so we need to make a batch of these hypotheses.
    if FLAGS.mode == 'decode':
        FLAGS.batch_size = FLAGS.beam_size

    # If single_pass=True, check we're in decode mode
    if FLAGS.single_pass and FLAGS.mode != 'decode':
        raise Exception(
            "The single_pass flag should only be True in decode mode")

    # Make a namedtuple hps, containing the values of the hyperparameters that the model needs
    hparam_list = [
        'mode', 'lr', 'adagrad_init_acc', 'rand_unif_init_mag',
        'trunc_norm_init_std', 'max_grad_norm', 'hidden_dim', 'emb_dim',
        'batch_size', 'max_dec_steps', 'max_enc_steps', 'coverage',
        'cov_loss_wt', 'pointer_gen', 'fine_tune', 'train_size', 'subred_size',
        'use_doc_vec', 'use_multi_attn', 'use_multi_pgen', 'use_multi_pvocab',
        'create_ckpt'
    ]
    hps_dict = {}
    for key, val in FLAGS.__flags.items():  # for each flag
        if key in hparam_list:  # if it's in the list
            hps_dict[key] = val  # add it to the dict
    hps = namedtuple("HParams", hps_dict.keys())(**hps_dict)

    # Create a batcher object that will create minibatches of data
    batcher = Batcher(FLAGS.data_path,
                      vocab,
                      hps,
                      single_pass=FLAGS.single_pass)

    tf.set_random_seed(111)  # a seed value for randomness

    #   return

    if hps.mode.value == 'train':
        print("creating model...")
        model = SummarizationModel(hps, vocab)

        # -------------------------------------
        if hps.create_ckpt.value:
            step = 0

            model.build_graph()
            print("get value")
            pretrained_ckpt = '/home/cs224u/pointer/log/pretrained_model_tf1.2.1/train/model-238410'
            reader = pywrap_tensorflow.NewCheckpointReader(pretrained_ckpt)
            var_to_shape_map = reader.get_variable_to_shape_map()
            value = {}
            for key in var_to_shape_map:
                value[key] = reader.get_tensor(key)

            print("assign op")
            assign_op = []
            if hps.use_multi_pvocab.value:
                new_key = [
                    "seq2seq/decoder/attention_decoder/AttnOutputProjection/Linear_0/Bias",
                    "seq2seq/decoder/attention_decoder/AttnOutputProjection/Linear_1/Bias"
                ]
                for v in tf.trainable_variables():
                    key = v.name.split(":")[0]
                    if key in new_key:
                        origin_key = "seq2seq/decoder/attention_decoder/AttnOutputProjection/Linear/" + key.split(
                            "/")[-1]
                        a_op = v.assign(tf.convert_to_tensor(
                            value[origin_key]))
                    else:
                        a_op = v.assign(tf.convert_to_tensor(value[key]))
                    # if key == "seq2seq/embedding/embedding":
                    # a_op = v.assign(tf.convert_to_tensor(value[key]))
                    assign_op.append(a_op)
            else:
                for v in tf.trainable_variables():
                    key = v.name.split(":")[0]
                    if key == "seq2seq/embedding/embedding":
                        a_op = v.assign(tf.convert_to_tensor(value[key]))
                        assign_op.append(a_op)
            # ratio = 1
            # for v in tf.trainable_variables():
            #   key = v.name.split(":")[0]
            #   # embedding (50000, 128) -> (50000, 32)

            #   if key == "seq2seq/embedding/embedding":
            #       print (key)
            #       print (value[key].shape)
            #       d1 = value[key].shape[1]
            #       a_op = v.assign(tf.convert_to_tensor(value[key][:,:d1//ratio]))
            #   # kernel (384, 1024) -> (96, 256)
            #   # w_reduce_c (512, 256) -> (128, 64)
            #   elif key == "seq2seq/encoder/bidirectional_rnn/fw/lstm_cell/kernel" or \
            #   key == "seq2seq/encoder/bidirectional_rnn/bw/lstm_cell/kernel" or \
            #   key == "seq2seq/reduce_final_st/w_reduce_c" or \
            #   key == "seq2seq/reduce_final_st/w_reduce_h" or \
            #   key == "seq2seq/decoder/attention_decoder/Linear/Matrix" or \
            #   key == "seq2seq/decoder/attention_decoder/lstm_cell/kernel" or \
            #   key == "seq2seq/decoder/attention_decoder/Attention/Linear/Matrix" or \
            #   key == "seq2seq/decoder/attention_decoder/AttnOutputProjection/Linear/Matrix":
            #       print (key)
            #       print (value[key].shape)
            #       d0, d1 = value[key].shape[0], value[key].shape[1]
            #       a_op = v.assign(tf.convert_to_tensor(value[key][:d0//ratio, :d1//ratio]))
            #   # bias (1024,) -> (256,)
            #   elif key == "seq2seq/encoder/bidirectional_rnn/fw/lstm_cell/bias" or \
            #   key == "seq2seq/encoder/bidirectional_rnn/bw/lstm_cell/bias" or \
            #   key == "seq2seq/reduce_final_st/bias_reduce_c" or \
            #   key == "seq2seq/reduce_final_st/bias_reduce_h" or \
            #   key == "seq2seq/decoder/attention_decoder/lstm_cell/bias" or \
            #   key == "seq2seq/decoder/attention_decoder/v" or \
            #   key == "seq2seq/decoder/attention_decoder/Attention/Linear/Bias" or \
            #   key == "seq2seq/decoder/attention_decoder/Linear/Bias" or \
            #   key == "seq2seq/decoder/attention_decoder/AttnOutputProjection/Linear/Bias":
            #       print (key)
            #       print (value[key].shape)
            #       d0 = value[key].shape[0]
            #       a_op = v.assign(tf.convert_to_tensor(value[key][:d0//ratio]))
            #   # W_h (1, 1, 512, 512) -> (1, 1, 128, 128)
            #   elif key == "seq2seq/decoder/attention_decoder/W_h":
            #       print (key)
            #       print (value[key].shape)
            #       d2, d3 = value[key].shape[2], value[key].shape[3]
            #       a_op = v.assign(tf.convert_to_tensor(value[key][:,:,:d2//ratio,:d3//ratio]))
            #   # Matrix (1152, 1) -> (288, 1)
            #   elif key == "seq2seq/decoder/attention_decoder/calculate_pgen/Linear/Matrix" or \
            #   key == "seq2seq/output_projection/w":
            #       print (key)
            #       print (value[key].shape)
            #       d0 = value[key].shape[0]
            #       a_op = v.assign(tf.convert_to_tensor(value[key][:d0//ratio,:]))
            #   # Bias (1,) -> (1,)
            #   elif key == "seq2seq/output_projection/v" or \
            #   key == "seq2seq/decoder/attention_decoder/calculate_pgen/Linear/Bias":
            #       print (key)
            #       print (value[key].shape)
            #       a_op = v.assign(tf.convert_to_tensor(value[key]))

            #   # multi_attn
            #   if hps.use_multi_attn.value:
            #     if key == "seq2seq/decoder/attention_decoder/attn_0/v" or \
            #     key == "seq2seq/decoder/attention_decoder/attn_1/v":
            #     # key == "seq2seq/decoder/attention_decoder/attn_2/v":
            #       k = "seq2seq/decoder/attention_decoder/v"
            #       print (key)
            #       print (value[k].shape)
            #       d0 = value[k].shape[0]
            #       a_op = v.assign(tf.convert_to_tensor(value[k][:d0//ratio]))
            #     if key == "seq2seq/decoder/attention_decoder/Attention/Linear_0/Bias" or \
            #     key == "seq2seq/decoder/attention_decoder/Attention/Linear_1/Bias":
            #     # key == "seq2seq/decoder/attention_decoder/Attention/Linear_2/Bias":
            #       k = "seq2seq/decoder/attention_decoder/Attention/Linear/Bias"
            #       print (key)
            #       print (value[k].shape)
            #       d0 = value[k].shape[0]
            #       a_op = v.assign(tf.convert_to_tensor(value[k][:d0//ratio]))
            #   elif hps.use_multi_pgen.value:
            #     if key == "seq2seq/decoder/attention_decoder/Linear_0/Bias" or \
            #     key == "seq2seq/decoder/attention_decoder/Linear_1/Bias":
            #     # key == "seq2seq/decoder/attention_decoder/Linear_2/Bias":
            #       k = "seq2seq/decoder/attention_decoder/Linear/Bias"
            #       print (key)
            #       print (value[k].shape)
            #       d0 = value[k].shape[0]
            #       a_op = v.assign(tf.convert_to_tensor(value[k][:d0//ratio]))
            #     if key == "seq2seq/decoder/attention_decoder/calculate_pgen/Linear_0/Bias" or \
            #     key == "seq2seq/decoder/attention_decoder/calculate_pgen/Linear_1/Bias":
            #     # key == "seq2seq/decoder/attention_decoder/calculate_pgen/Linear_2/Bias":
            #       k = "seq2seq/decoder/attention_decoder/calculate_pgen/Linear/Bias"
            #       print (key)
            #       print (value[k].shape)
            #       a_op = v.assign(tf.convert_to_tensor(value[k]))
            #   elif hps.use_multi_pvocab.value:
            #     if key == "seq2seq/decoder/attention_decoder/AttnOutputProjection/Linear_0/Bias" or \
            #     key == "seq2seq/decoder/attention_decoder/AttnOutputProjection/Linear_1/Bias":
            #     # key == "seq2seq/decoder/attention_decoder/AttnOutputProjection/Linear_2/Bias":
            #       k = "seq2seq/decoder/attention_decoder/AttnOutputProjection/Linear/Bias"
            #       print (key)
            #       print (value[k].shape)
            #       d0 = value[k].shape[0]
            #       a_op = v.assign(tf.convert_to_tensor(value[k][:d0//ratio]))

            #    assign_op.append(a_op)

            # Add an op to initialize the variables.
            init_op = tf.global_variables_initializer()
            # Add ops to save and restore all the variables.
            saver = tf.train.Saver()
            with tf.Session(config=util.get_config()) as sess:
                sess.run(init_op)
                # Do some work with the model.
                for a_op in assign_op:
                    a_op.op.run()

                for _ in range(0):
                    batch = batcher.next_batch()
                    results = model.run_train_step(sess, batch)

                # Save the variables to disk.
                if hps.use_multi_attn.value:
                    ckpt_tag = "multi_attn_2_attn_proj"
                elif hps.use_multi_pgen.value:
                    ckpt_tag = "multi_attn_2_pgen_proj"
                elif hps.use_multi_pvocab.value:
                    ckpt_tag = "big_multi_attn_2_pvocab_proj"
                else:
                    ckpt_tag = "pointer_proj"

                ckpt_to_save = '/home/cs224u/pointer/log/ckpt/' + ckpt_tag + '/model.ckpt-' + str(
                    step)
                save_path = saver.save(sess, ckpt_to_save)
                print("Model saved in path: %s" % save_path)

        # -------------------------------------
        else:
            setup_training(model, batcher, hps)

    elif hps.mode.value == 'eval':
        model = SummarizationModel(hps, vocab)
        run_eval(model, batcher, vocab)
    elif hps.mode.value == 'decode':
        decode_model_hps = hps  # This will be the hyperparameters for the decoder model
        decode_model_hps = hps._replace(
            max_dec_steps=1
        )  # The model is configured with max_dec_steps=1 because we only ever run one step of the decoder at a time (to do beam search). Note that the batcher is initialized with max_dec_steps equal to e.g. 100 because the batches need to contain the full summaries
        model = SummarizationModel(decode_model_hps, vocab)
        decoder = BeamSearchDecoder(model, batcher, vocab)
        decoder.decode(
        )  # decode indefinitely (unless single_pass=True, in which case deocde the dataset exactly once)
    else:
        raise ValueError("The 'mode' flag must be one of train/eval/decode")
コード例 #21
0
                    all_beams.append(new_beam)

            beams = []
            for h in self.sort_beams(all_beams):
                if h.latest_token == self.vocab.word2id(data.STOP_DECODING):
                    if steps >= config.min_dec_steps:
                        results.append(h)
                else:
                    beams.append(h)
                if len(beams) == config.beam_size or len(
                        results) == config.beam_size:
                    break

            steps += 1

        if len(results) == 0:
            results = beams

        beams_sorted = self.sort_beams(results)

        return beams_sorted[0]


if __name__ == '__main__':
    article = "近日,一段消防员用叉子吃饭的视频在网上引起热议。原来是因为训练强度太大,半天下来,大家拿筷子的手一直在抖,甚至没法夹菜。于是,用叉子吃饭,渐渐成了上海黄浦消防车站中队饭桌上的传统。转发,向消防员致敬!"
    model_path = sys.argv[1]

    vocab = Vocab(config.vocab_path, config.vocab_size)
    batch = build_batch_by_article(article, vocab)
    beam_processor = BeamSearch(model_path, vocab)
    beam_processor.decode(batch)
def main(unused_argv):
    if len(unused_argv
           ) != 1:  # prints a message if you've entered flags incorrectly
        raise Exception("Problem with flags: %s" % unused_argv)

    tf.logging.set_verbosity(
        tf.logging.INFO)  # choose what level of logging you want
    tf.logging.info('Starting running in %s mode...', (FLAGS.mode))

    # Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
    FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)
    if not os.path.exists(FLAGS.log_root):
        os.makedirs(FLAGS.log_root)

    config = {
        'kernel_sizes': [3, 4, 5],
        'edim': FLAGS.emb_dim,
        'n_words': FLAGS.vocab_size,
        'std_dev': 0.05,
        'sentence_len': FLAGS.max_enc_steps,
        'n_filters': 100,
        'batch_size': FLAGS.batch_size,
        'trunc_norm_init_std': FLAGS.trunc_norm_init_std,
        'rand_unif_init_mag': FLAGS.rand_unif_init_mag,
        'max_grad_norm': FLAGS.max_grad_norm,
        'num_classes': FLAGS.num_class
    }

    vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size)

    hparam_list = [
        'lr', 'adagrad_init_acc', 'rand_unif_init_mag', 'trunc_norm_init_std',
        'max_grad_norm', 'hidden_dim', 'emb_dim', 'batch_size',
        'max_dec_steps', 'max_enc_steps', 'source_class', 'num_class',
        'data_dir', 'train_file', 'test_file', 'neutral_file',
        'neutral_file_filtering', 'max_epochs'
    ]
    hps_dict = {}
    for key, val in FLAGS.__flags.items():  # for each flag
        if key in hparam_list:  # if it's in the list
            hps_dict[key] = val  # add it to the dict
    hps_discriminator = namedtuple("HParams", hps_dict.keys())(**hps_dict)

    tf.set_random_seed(111)

    # Batcher: 데이터 준비하는 부분
    train_batcher = TrainBatcher(hps_discriminator, vocab)
    test_batcher = TestBatcher(hps_discriminator, vocab)

    # CNN class 초기화
    cnn_classifier = CNN(config)
    # CNN model 초기화 (TF-level)
    sess_cnn_cls, saver_cnn_cls, train_dir_cnn_cls = setup_training_cnnclassifier(
        cnn_classifier)
    run_train_cnn_classifier(model=cnn_classifier,
                             train_batcher=train_batcher,
                             test_batcher=test_batcher,
                             max_run_epoch=hps_discriminator.max_epochs,
                             sess=sess_cnn_cls,
                             saver=saver_cnn_cls,
                             train_dir=train_dir_cnn_cls)

    neutral_batcher = NeutralBatcher(hps_discriminator, vocab)
    filter_neutral_data(batcher=neutral_batcher,
                        model=cnn_classifier,
                        sess=sess_cnn_cls,
                        hps=hps_discriminator)
コード例 #23
0
def run(args, local_rank):
    """ Distributed Synchronous """
    torch.manual_seed(1234)
    vocab = Vocab(args.vocab, min_occur_cnt=args.min_occur_cnt, specials=[])
    if (args.world_size == 1 or dist.get_rank() == 0):
        print (vocab.size)
    model = BIGLM(local_rank, vocab, args.embed_dim, args.ff_embed_dim, args.num_heads, args.dropout, args.layers, args.approx)
    if args.start_from is not None:
        ckpt = torch.load(args.start_from, map_location='cpu')
        model.load_state_dict(ckpt['model'])
    model = model.cuda(local_rank)
   
    weight_decay_params = []
    no_weight_decay_params = []
    
    for name, param in model.named_parameters():
        if name.endswith('bias') or 'layer_norm' in name:
            no_weight_decay_params.append(param)
        else:
            weight_decay_params.append(param)
    grouped_params = [{'params':weight_decay_params, 'weight_decay':0.01},
                        {'params':no_weight_decay_params, 'weight_decay':0.}]
    if args.world_size > 1:
        torch.manual_seed(1234 + dist.get_rank())
        random.seed(5678 + dist.get_rank())
    
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        optimizer = FusedAdam(grouped_params,
                              lr=args.lr,
                              betas=(0.9, 0.999),
                              eps =1e-6,
                              bias_correction=False,
                              max_grad_norm=1.0)
        optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)

    else:
        optimizer = AdamWeightDecayOptimizer(grouped_params,
                           lr=args.lr, betas=(0.9, 0.999), eps=1e-6)
    if args.start_from is not None:
        optimizer.load_state_dict(ckpt['optimizer'])

    train_data = DataLoader(vocab, args.train_data, args.batch_size, args.max_len)
    batch_acm = 0
    acc_acm, ntokens_acm, npairs_acm, loss_acm = 0., 0., 0., 0.
    while True:
        model.train()
        for truth, inp, msk in train_data:
            batch_acm += 1
            if batch_acm <= args.warmup_steps:
                update_lr(optimizer, args.lr*batch_acm/args.warmup_steps)
            truth = truth.cuda(local_rank)
            inp = inp.cuda(local_rank)
            msk = msk.cuda(local_rank)

            optimizer.zero_grad()
            res, loss, acc, ntokens, npairs = model(truth, inp, msk)
            loss_acm += loss.item()
            acc_acm += acc
            ntokens_acm += ntokens
            npairs_acm += npairs
            if args.fp16:
                optimizer.backward(loss)
            else:
                loss.backward()
            if args.world_size > 1:
                average_gradients(model)
            torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
            optimizer.step()
            if (args.world_size==1 or dist.get_rank() ==0) and batch_acm%args.print_every == -1%args.print_every:
                print ('batch_acm %d, loss %.3f, acc %.3f, x_acm %d'%(batch_acm, loss_acm/args.print_every, acc_acm/ntokens_acm, npairs_acm))
                acc_acm, ntokens_acm, loss_acm = 0., 0., 0.
            if (args.world_size==1 or dist.get_rank() ==0) and batch_acm%args.save_every == -1%args.save_every:
                if not os.path.exists(args.save_dir):
                    os.mkdir(args.save_dir)
                torch.save({'args':args, 'model':model.state_dict(), 'optimizer':optimizer.state_dict()}, '%s/epoch%d_batch_%d'%(args.save_dir, train_data.epoch_id, batch_acm))
コード例 #24
0
def main(unused_argv):

    tf.logging.set_verbosity(
        tf.logging.INFO)  # choose what level of logging you want
    tf.logging.info('Starting running in %s mode...', (FLAGS.mode))
    #創建字典
    vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size)

    hparam_list = [
        'mode', 'lr', 'adagrad_init_acc', 'rand_unif_init_mag',
        'trunc_norm_init_std', 'max_grad_norm', 'hidden_dim', 'emb_dim',
        'batch_size', 'max_dec_sen_num', 'max_dec_steps', 'max_enc_steps'
    ]
    hps_dict = {}
    for key, val in FLAGS.__flags.items():
        if key in hparam_list:
            hps_dict[key] = val.value  # add it to the dict
    hps_generator = namedtuple("HParams", hps_dict.keys())(**hps_dict)

    hparam_list = [
        'lr', 'adagrad_init_acc', 'rand_unif_init_mag', 'trunc_norm_init_std',
        'max_grad_norm', 'hidden_dim', 'emb_dim', 'batch_size',
        'max_enc_sen_num', 'max_enc_seq_len'
    ]
    hps_dict = {}

    for key, val in FLAGS.__flags.items():  # for each flag
        if key in hparam_list:
            hps_dict[key] = val.value  # add it to the dict
    hps_discriminator = namedtuple("HParams", hps_dict.keys())(**hps_dict)

    # # 取出最小batch size 的資料量
    batcher = GenBatcher(vocab, hps_generator)
    # print(batcher.train_batch[0].original_review_inputs)
    # print(len(batcher.train_batch[0].original_review_inputs))
    tf.set_random_seed(123)

    if FLAGS.mode == 'train_generator':

        # print("Start pre-training ......")
        ge_model = Generator(hps_generator, vocab)
        sess_ge, saver_ge, train_dir_ge = setup_training_generator(ge_model)

        generated = Generated_sample(ge_model, vocab, batcher, sess_ge)
        print("Start pre-training generator......")
        # run_pre_train_generator(ge_model, batcher, 1000, sess_ge, saver_ge, train_dir_ge)
        util.load_ckpt(saver_ge, sess_ge, ckpt_dir="train-generator")
        print("finish load train-generator")

        print("Generating negative examples......")

        generated.generator_train_negative_example()
        generated.generator_test_negative_example()

        print("finish write")
    elif FLAGS.mode == 'train_discriminator':
        # print("Start pre-training ......")
        model_dis = Discriminator(hps_discriminator, vocab)
        dis_batcher = DisBatcher(hps_discriminator, vocab,
                                 "discriminator_train/positive/*",
                                 "discriminator_train/negative/*",
                                 "discriminator_test/positive/*",
                                 "discriminator_test/negative/*")
        sess_dis, saver_dis, train_dir_dis = setup_training_discriminator(
            model_dis)

        print("Start pre-training discriminator......")
        if not os.path.exists("discriminator_result"):
            os.mkdir("discriminator_result")
        run_pre_train_discriminator(model_dis, dis_batcher, 1000, sess_dis,
                                    saver_dis, train_dir_dis)

    elif FLAGS.mode == "adversarial_train":

        generator_graph = tf.Graph()
        discriminatorr_graph = tf.Graph()

        print("Start adversarial-training......")
        # tf.reset_default_graph()

        with generator_graph.as_default():
            model = Generator(hps_generator, vocab)
            sess_ge, saver_ge, train_dir_ge = setup_training_generator(model)
            generated = Generated_sample(model, vocab, batcher, sess_ge)

            util.load_ckpt(saver_ge, sess_ge, ckpt_dir="train-generator")
            print("finish load train-generator")
        with discriminatorr_graph.as_default():
            model_dis = Discriminator(hps_discriminator, vocab)
            dis_batcher = DisBatcher(hps_discriminator, vocab,
                                     "discriminator_train/positive/*",
                                     "discriminator_train/negative/*",
                                     "discriminator_test/positive/*",
                                     "discriminator_test/negative/*")
            sess_dis, saver_dis, train_dir_dis = setup_training_discriminator(
                model_dis)

            util.load_ckpt(saver_dis, sess_dis, ckpt_dir="train-discriminator")
            print("finish load train-discriminator")

        print("Start adversarial  training......")
        if not os.path.exists("train_sample_generated"):
            os.mkdir("train_sample_generated")
        if not os.path.exists("test_max_generated"):
            os.mkdir("test_max_generated")
        if not os.path.exists("test_sample_generated"):
            os.mkdir("test_sample_generated")

        # whole_decay = False

        # for epoch in range(100):
        #     print('開始訓練')
        #     batches = batcher.get_batches(mode = 'train')
        #     for step in range(int(len(batches)/20)):

        #         run_train_generator(model, model_dis, sess_dis, batcher, dis_batcher, batches[step*20:(step+1)*20], sess_ge, saver_ge, train_dir_ge)

        #         generated.generator_sample_example(
        #             "train_sample_generated/" + str(epoch) + "epoch_step" + str(step) + "_temp_positive",
        #             "train_sample_generated/" + str(epoch) + "epoch_step" + str(step) + "_temp_negative", 20)

        #         tf.logging.info("test performance: ")
        #         tf.logging.info("epoch: "+str(epoch)+" step: "+str(step))

        #         print("evaluate the diversity of DP-GAN (decode based on  max probability)")
        #         generated.generator_test_sample_example(
        #             "test_sample_generated/" + str(epoch) + "epoch_step" + str(step) + "_temp_positive",
        #             "test_sample_generated/" + str(epoch) + "epoch_step" + str(step) + "_temp_negative", 20)

        #         print("evaluate the diversity of DP-GAN (decode based on sampling)")
        #         generated.generator_test_max_example(
        #             "test_max_generated/" + str(epoch) + "epoch_step" + str(step) + "_temp_positive",
        #             "test_max_generated/" + str(epoch) + "epoch_step" + str(step) + "_temp_negative", 20)

        #         dis_batcher.train_queue = []
        #         dis_batcher.train_queue = []
        #         for i in range(epoch + 1):
        #             for j in range(step + 1):
        #                 dis_batcher.train_queue += dis_batcher.fill_example_queue("train_sample_generated/"+str(i)+"epoch_step"+str(j)+"_temp_positive/*")
        #                 dis_batcher.train_queue += dis_batcher.fill_example_queue("train_sample_generated/"+str(i)+"epoch_step"+str(j)+"_temp_negative/*")
        #         dis_batcher.train_batch = dis_batcher.create_batches(mode="train", shuffleis=True)
        #         whole_decay = run_train_discriminator(model_dis, 5, dis_batcher, dis_batcher.get_batches(mode="train"), sess_dis, saver_dis, train_dir_dis, whole_decay)
    elif FLAGS.mode == "test_language_model":
        ge_model = Generator(hps_generator, vocab)
        sess_ge, saver_ge, train_dir_ge = setup_training_generator(ge_model)
        # saver_ge.restore(sess_ge, "train-generator/model-31200")
        util.load_ckpt(saver_ge, sess_ge, ckpt_dir="train-generator")
        print("finish load train-generator")

        jieba.load_userdict('dir.txt')
        inputs = ''
        while inputs != "close":
            inputs = input("Enter your ask: ")
            sentence = jieba.cut(inputs)
            sentence = (" ".join(sentence))
            print(sentence)
            sentence = sentence.split()
            enc_input = [vocab.word2id(w) for w in sentence]
            enc_lens = np.array([len(enc_input)])
            enc_input = np.array([enc_input])
            out_sentence = ('[START]').split()
            dec_batch = [vocab.word2id(w) for w in out_sentence]
            #dec_batch = [2] + dec_batch
            #dec_batch.append(3)
            while len(dec_batch) < 40:
                dec_batch.append(1)

            dec_batch = np.array([dec_batch])
            dec_batch = np.resize(dec_batch, (1, 1, 40))
            dec_lens = np.array([len(dec_batch)])

            result = ge_model.run_test_language_model(sess_ge, enc_input,
                                                      enc_lens, dec_batch,
                                                      dec_lens)

            output_ids = [int(t) for t in result['generated'][0][0]][1:]
            decoded_words = data.outputids2words(output_ids, vocab, None)
            print("decoded_words :", decoded_words)
            try:
                if decoded_words[0] == '[STOPDOC]':
                    decoded_words = decoded_words[1:]
                fst_stop_idx = decoded_words.index(
                    data.STOP_DECODING_DOCUMENT
                )  # index of the (first) [STOP] symbol
                decoded_words = decoded_words[:fst_stop_idx]
            except ValueError:
                decoded_words = decoded_words

            if decoded_words[-1] != '.' and decoded_words[
                    -1] != '!' and decoded_words[-1] != '?':
                decoded_words.append('.')
            decoded_words_all = []
            decoded_output = ' '.join(decoded_words).strip()  # single string
            decoded_words_all.append(decoded_output)
            decoded_words_all = ' '.join(decoded_words_all).strip()
            decoded_words_all = decoded_words_all.replace("[UNK] ", "")
            decoded_words_all = decoded_words_all.replace("[UNK]", "")
            decoded_words_all = decoded_words_all.replace(" ", "")
            decoded_words_all, _ = re.subn(r"(! ){2,}", "", decoded_words_all)
            decoded_words_all, _ = re.subn(r"(\. ){2,}", "", decoded_words_all)
            if decoded_words_all.startswith(','):
                decoded_words_all = decoded_words_all[1:]
            print("The resonse   : {}".format(decoded_words_all))
コード例 #25
0
ファイル: encoder.py プロジェクト: wendeppkdc/AMR-gs
    def reset_parameters(self):
        for layer in self.layers:
            nn.init.normal_(layer.weight, std=0.02)
            nn.init.constant_(layer.bias[self.input_dim:], 1)
            nn.init.constant_(layer.bias[:self.input_dim], 0)

    def forward(self, x):
        for layer in self.layers:
            new_x = layer(x)
            new_x, gate = new_x.chunk(2, dim=-1)
            new_x = F.relu(new_x)
            gate = torch.sigmoid(gate)
            x = gate * x + (1 - gate) * new_x
        return x


if __name__ == "__main__":
    from data import Vocab, CLS, DUM, END
    vocab = Vocab('../data/AMR/amr_1.0_reca/lem_vocab', 3, [CLS])
    embed = AMREmbedding(vocab,
                         300,
                         pretrained_file='../data/glove.840B.300d.txt',
                         dump_file='../data/AMR/amr_1.0_reca/glove_lem_embed')
    vocab = Vocab('../data/AMR/amr_1.0_reca/concept_vocab', 3, [DUM, END])
    embed = AMREmbedding(
        vocab,
        300,
        pretrained_file='../data/glove.840B.300d.txt',
        amr=True,
        dump_file='../data/AMR/amr_1.0_reca/glove_concept_embed')
コード例 #26
0
def main(unused_argv):
    if len(unused_argv
           ) != 1:  # prints a message if you've entered flags incorrectly
        raise Exception("Problem with flags: %s" % unused_argv)

    tf.logging.set_verbosity(
        tf.logging.INFO)  # choose what level of logging you want
    tf.logging.info('Starting running in %s mode...', (FLAGS.mode))

    # Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
    FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)
    if not os.path.exists(FLAGS.log_root):
        os.makedirs(FLAGS.log_root)

    vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size)  # create a vocabulary

    # Make a namedtuple hps, containing the values of the hyperparameters that the model needs
    hparam_list = [
        'mode', 'lr', 'adagrad_init_acc', 'rand_unif_init_mag',
        'trunc_norm_init_std', 'max_grad_norm', 'hidden_dim', 'emb_dim',
        'batch_size', 'max_dec_steps', 'max_enc_steps'
    ]
    hps_dict = {}
    for key, val in FLAGS.__flags.items():  # for each flag
        if key in hparam_list:  # if it's in the list
            hps_dict[key] = val  # add it to the dict
    hps_generator = namedtuple("HParams", hps_dict.keys())(**hps_dict)

    hparam_list = [
        'lr', 'adagrad_init_acc', 'rand_unif_init_mag', 'trunc_norm_init_std',
        'max_grad_norm', 'hidden_dim', 'emb_dim', 'batch_size', 'max_dec_steps'
    ]
    hps_dict = {}
    for key, val in FLAGS.__flags.items():  # for each flag
        if key in hparam_list:  # if it's in the list
            hps_dict[key] = val  # add it to the dict
    hps_discriminator = namedtuple("HParams", hps_dict.keys())(**hps_dict)

    tf.set_random_seed(
        111
    )  # a seed value for randomness # train-classification  train-sentiment  train-cnn-classificatin train-generator

    if FLAGS.mode == "train-classifier":

        #print("Start pre-training......")
        model_class = Classification(hps_discriminator, vocab)
        cla_batcher = ClaBatcher(hps_discriminator, vocab)
        sess_cls, saver_cls, train_dir_cls = setup_training_classification(
            model_class)
        print("Start pre-training classification......")
        run_pre_train_classification(model_class, cla_batcher, 1, sess_cls,
                                     saver_cls, train_dir_cls)  #10
        generated = Generate_training_sample(model_class, vocab, cla_batcher,
                                             sess_cls)

        print("Generating training examples......")
        generated.generate_training_example("train")
        generated.generate_test_example("test")

    elif FLAGS.mode == "train-sentimentor":

        model_class = Classification(hps_discriminator, vocab)
        cla_batcher = ClaBatcher(hps_discriminator, vocab)
        sess_cls, saver_cls, train_dir_cls = setup_training_classification(
            model_class)

        print("Start pre_train_sentimentor......")
        model_sentiment = Sentimentor(hps_generator, vocab)
        sentiment_batcher = SenBatcher(hps_generator, vocab)
        sess_sen, saver_sen, train_dir_sen = setup_training_sentimentor(
            model_sentiment)
        util.load_ckpt(saver_cls, sess_cls, ckpt_dir="train-classification")
        run_pre_train_sentimentor(model_sentiment, sentiment_batcher, 1,
                                  sess_sen, saver_sen, train_dir_sen)  #1

    elif FLAGS.mode == "test":

        config = {
            'n_epochs': 5,
            'kernel_sizes': [3, 4, 5],
            'dropout_rate': 0.5,
            'val_split': 0.4,
            'edim': 300,
            'n_words': None,  # Leave as none
            'std_dev': 0.05,
            'sentence_len': 50,
            'n_filters': 100,
            'batch_size': 50
        }
        config['n_words'] = 50000

        cla_cnn_batcher = CNN_ClaBatcher(hps_discriminator, vocab)
        cnn_classifier = CNN(config)
        sess_cnn_cls, saver_cnn_cls, train_dir_cnn_cls = setup_training_cnnclassifier(
            cnn_classifier)
        #util.load_ckpt(saver_cnn_cls, sess_cnn_cls, ckpt_dir="train-cnnclassification")
        run_train_cnn_classifier(cnn_classifier, cla_cnn_batcher, 1,
                                 sess_cnn_cls, saver_cnn_cls,
                                 train_dir_cnn_cls)  #1

        files = os.listdir("test-generate-transfer/")
        for file_ in files:
            run_test_our_method(cla_cnn_batcher, cnn_classifier, sess_cnn_cls,
                                "test-generate-transfer/" + file_ + "/*")

    #elif FLAGS.mode == "test":

    elif FLAGS.mode == "train-generator":

        model_class = Classification(hps_discriminator, vocab)
        cla_batcher = ClaBatcher(hps_discriminator, vocab)
        sess_cls, saver_cls, train_dir_cls = setup_training_classification(
            model_class)

        model_sentiment = Sentimentor(hps_generator, vocab)
        sentiment_batcher = SenBatcher(hps_generator, vocab)
        sess_sen, saver_sen, train_dir_sen = setup_training_sentimentor(
            model_sentiment)

        config = {
            'n_epochs': 5,
            'kernel_sizes': [3, 4, 5],
            'dropout_rate': 0.5,
            'val_split': 0.4,
            'edim': 300,
            'n_words': None,  # Leave as none
            'std_dev': 0.05,
            'sentence_len': 50,
            'n_filters': 100,
            'batch_size': 50
        }
        config['n_words'] = 50000

        cla_cnn_batcher = CNN_ClaBatcher(hps_discriminator, vocab)
        cnn_classifier = CNN(config)
        sess_cnn_cls, saver_cnn_cls, train_dir_cnn_cls = setup_training_cnnclassifier(
            cnn_classifier)

        model = Generator(hps_generator, vocab)
        batcher = GenBatcher(vocab, hps_generator)
        sess_ge, saver_ge, train_dir_ge = setup_training_generator(model)

        #util.load_ckpt(saver_cnn_cls, sess_cnn_cls, ckpt_dir="train-cnnclassification")
        util.load_ckpt(saver_sen, sess_sen, ckpt_dir="train-sentimentor")

        generated = Generated_sample(model, vocab, batcher, sess_ge)
        print("Start pre-training generator......")
        run_pre_train_generator(model, batcher, 1, sess_ge, saver_ge,
                                train_dir_ge, generated, cla_cnn_batcher,
                                cnn_classifier, sess_cnn_cls)  # 4

        generated.generate_test_negetive_example(
            "temp_negetive",
            batcher)  # batcher, model_class, sess_cls, cla_batcher
        generated.generate_test_positive_example("temp_positive", batcher)

        #run_test_our_method(cla_cnn_batcher, cnn_classifier, sess_cnn_cls,
        #                    "temp_negetive" + "/*")

        loss_window = 0
        t0 = time.time()
        print("begin reinforcement learning:")
        for epoch in range(30):
            batches = batcher.get_batches(mode='train')
            for i in range(len(batches)):
                current_batch = copy.deepcopy(batches[i])
                sentiment_batch = batch_sentiment_batch(
                    current_batch, sentiment_batcher)
                result = model_sentiment.max_generator(sess_sen,
                                                       sentiment_batch)
                weight = result['generated']
                current_batch.weight = weight
                sentiment_batch.weight = weight

                cla_batch = batch_classification_batch(current_batch, batcher,
                                                       cla_batcher)
                result = model_class.run_ypred_auc(sess_cls, cla_batch)

                cc = SmoothingFunction()

                reward_sentiment = 1 - np.abs(0.5 - result['y_pred_auc'])
                reward_BLEU = []
                for k in range(FLAGS.batch_size):
                    reward_BLEU.append(
                        sentence_bleu(
                            [current_batch.original_reviews[k].split()],
                            cla_batch.original_reviews[k].split(),
                            smoothing_function=cc.method1))

                reward_BLEU = np.array(reward_BLEU)

                reward_de = (2 / (1.0 / (1e-6 + reward_sentiment) + 1.0 /
                                  (1e-6 + reward_BLEU)))

                result = model.run_train_step(sess_ge, current_batch)
                train_step = result[
                    'global_step']  # we need this to update our running average loss
                loss = result['loss']
                loss_window += loss
                if train_step % 100 == 0:
                    t1 = time.time()
                    tf.logging.info(
                        'seconds for %d training generator step: %.3f ',
                        train_step, (t1 - t0) / 100)
                    t0 = time.time()
                    tf.logging.info('loss: %f', loss_window /
                                    100)  # print the loss to screen
                    loss_window = 0.0
                if train_step % 10000 == 0:

                    generated.generate_test_negetive_example(
                        "test-generate-transfer/" + str(epoch) + "epoch_step" +
                        str(train_step) + "_temp_positive", batcher)
                    generated.generate_test_positive_example(
                        "test-generate/" + str(epoch) + "epoch_step" +
                        str(train_step) + "_temp_positive", batcher)
                    #saver_ge.save(sess, train_dir + "/model", global_step=train_step)
                    #run_test_our_method(cla_cnn_batcher, cnn_classifier, sess_cnn_cls,
                    #                    "test-generate-transfer/" + str(epoch) + "epoch_step" + str(
                    #                        train_step) + "_temp_positive" + "/*")

                cla_batch, bleu = output_to_classification_batch(
                    result['generated'], current_batch, batcher, cla_batcher,
                    cc)
                result = model_class.run_ypred_auc(sess_cls, cla_batch)
                reward_result_sentiment = result['y_pred_auc']
                reward_result_bleu = np.array(bleu)

                reward_result = (2 / (1.0 /
                                      (1e-6 + reward_result_sentiment) + 1.0 /
                                      (1e-6 + reward_result_bleu)))

                current_batch.score = 1 - current_batch.score

                result = model.max_generator(sess_ge, current_batch)

                cla_batch, bleu = output_to_classification_batch(
                    result['generated'], current_batch, batcher, cla_batcher,
                    cc)
                result = model_class.run_ypred_auc(sess_cls, cla_batch)
                reward_result_transfer_sentiment = result['y_pred_auc']
                reward_result_transfer_bleu = np.array(bleu)

                reward_result_transfer = (
                    2 / (1.0 /
                         (1e-6 + reward_result_transfer_sentiment) + 1.0 /
                         (1e-6 + reward_result_transfer_bleu)))

                #tf.logging.info("reward_nonsentiment: "+str(reward_sentiment) +" output_original_sentiment: "+str(reward_result_sentiment)+" output_original_bleu: "+str(reward_result_bleu))

                reward = reward_result_transfer  #reward_de + reward_result_sentiment +
                #tf.logging.info("reward_de: "+str(reward_de))

                model_sentiment.run_train_step(sess_sen, sentiment_batch,
                                               reward)
コード例 #27
0
    def evaluate_model(self, eval_file, gpus):
        self.device = torch.device(
            "cuda:" + str(gpus) if torch.cuda.is_available() else "cpu")
        print('device', self.device)
        test_models = []
        if os.path.isdir(eval_file):
            for file in os.listdir(eval_file):
                fname = os.path.join(eval_file, file)
                if os.path.isfile(fname):
                    test_models.append(fname)
            model_args = torch.load(fname, map_location=self.device)['args']
        else:
            test_models.append(eval_file)
            model_args = torch.load(eval_file,
                                    map_location=self.device)['args']

        from data import Vocab, DataLoader, STR, END, CLS, SEL, TL, rCLS
        model_args = collections.namedtuple("HParams", sorted(
            model_args.keys()))(**model_args)
        vocabs = dict()
        vocabs['concept'] = Vocab(model_args.concept_vocab, 5, [CLS])
        vocabs['token'] = Vocab(model_args.token_vocab, 5, [STR, END])
        vocabs['token_char'] = Vocab(model_args.token_char_vocab, 100,
                                     [STR, END])
        vocabs['concept_char'] = Vocab(model_args.concept_char_vocab, 100,
                                       [STR, END])
        vocabs['relation'] = Vocab(model_args.relation_vocab, 5,
                                   [CLS, rCLS, SEL, TL])
        lexical_mapping = LexicalMap()

        if self.args.encoder_:
            vocabs, lexical_mapping = self._prepare_data()
            config_class, model_class, tokenizer_class = MODEL_CLASSES[
                self.args.encoder_type]

            bert_config = config_class.from_pretrained(self.args.lm_model, )
            bert_tokenizer = tokenizer_class.from_pretrained(
                self.args.lm_model)
            bert_model = model_class.from_pretrained(
                self.args.lm_model,
                from_tf=bool(".ckpt" in self.args.lm_model),
                config=self.args.lm_model,
            ).to(self.device)

            eval_model = Reasoning_AMR_CN_DUAL(
                vocabs,
                model_args.concept_char_dim,
                model_args.concept_dim,
                model_args.cnn_filters,
                model_args.char2concept_dim,
                model_args.rel_dim,
                model_args.rnn_hidden_size,
                model_args.rnn_num_layers,
                model_args.embed_dim,
                model_args.bert_embed_dim,
                model_args.ff_embed_dim,
                model_args.num_heads,
                model_args.dropout,
                model_args.snt_layer,
                model_args.graph_layers,
                model_args.pretrained_file,
                self.device,
                model_args.batch_size,
                model_args.lm_model,
                bert_config,
                bert_model,
                bert_tokenizer,
                model_args.bert_max_length,
                model_args.n_answers,
                model_args.encoder_type,
                model_args.gcn_concept_dim,
                model_args.gcn_hidden_dim,
                model_args.gcn_output_dim,
                model_args.max_conceptnet_length,
                model_args.conceptnet_path,
            )

        else:
            eval_model = ''
        test_data = DataLoader(self.args,
                               vocabs,
                               lexical_mapping,
                               self.args.test_data,
                               model_args.batch_size,
                               for_train='Eval')

        answer_tempelate = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E'}
        # Evaluate!
        logger.info("***** Running Evaluating *****")
        logger.info("  Task: %s", self.args.task)
        logger.info("  Num examples = %d", len(test_data))
        logger.info("  Running Language Model = %s", model_args.lm_model)
        logger.info("  Running Model = %s", model_args.encoder_type)
        logger.info("  Running File = %s", eval_file)
        logger.info("  Test data = %s", self.args.test_data)

        for test_model in test_models:
            eval_model.load_state_dict(
                torch.load(test_model, map_location=self.device)['model'])
            eval_model = eval_model.cuda(self.device)
            eval_model.eval()

            running_corrects = 0
            eval_loss_sum, batch_acm = 0, 0
            with open(test_model + model_args.prefix + '.csv', 'w',
                      newline='') as csvfile:
                csvwriter = csv.writer(csvfile,
                                       delimiter=',',
                                       quoting=csv.QUOTE_MINIMAL)
                for batch in test_data:
                    batch = move_to_cuda(batch, self.device)
                    eval_logits, eval_labels, ans_ids, = eval_model(
                        batch, train=False)
                    eval_logits_forpred = eval_logits.clone().detach()

                    pred_values, pred_indices = torch.max(
                        eval_logits_forpred, 1)
                    eval_labels = eval_labels.tolist()
                    eval_pred = pred_indices.tolist()

                    corrects = [
                        i for i, j in zip(eval_labels, eval_pred) if i == j
                    ]

                    batch_acm += 1
                    # Statistics
                    running_corrects += len(corrects)
                    for i, pred in enumerate(eval_pred):
                        csvwriter.writerow([
                            ans_ids[i], answer_tempelate[int(pred_indices[i])]
                        ])
                print('Overall accuracy: ',
                      (running_corrects / len(test_data)))
コード例 #28
0
class Seq2Seq(object):

  def calc_running_avg_loss(self, loss, running_avg_loss, step, decay=0.99):
    """Calculate the running average loss via exponential decay.
    This is used to implement early stopping w.r.t. a more smooth loss curve than the raw loss curve.

    Args:
      loss: loss on the most recent eval step
      running_avg_loss: running_avg_loss so far
      summary_writer: FileWriter object to write for tensorboard
      step: training iteration step
      decay: rate of exponential decay, a float between 0 and 1. Larger is smoother.

    Returns:
      running_avg_loss: new running average loss
    """
    if running_avg_loss == 0:  # on the first iteration just take the loss
      running_avg_loss = loss
    else:
      running_avg_loss = running_avg_loss * decay + (1 - decay) * loss
    running_avg_loss = min(running_avg_loss, 12)  # clip
    loss_sum = tf.Summary()
    tag_name = 'running_avg_loss/decay=%f' % (decay)
    loss_sum.value.add(tag=tag_name, simple_value=running_avg_loss)
    self.summary_writer.add_summary(loss_sum, step)
    tf.logging.info('running_avg_loss: %f', running_avg_loss)
    return running_avg_loss

  def restore_best_model(self):
    """Load bestmodel file from eval directory, add variables for adagrad, and save to train directory"""
    tf.logging.info("Restoring bestmodel for training...")

    # Initialize all vars in the model
    sess = tf.Session(config=util.get_config())
    print("Initializing all variables...")
    sess.run(tf.initialize_all_variables())

    # Restore the best model from eval dir
    saver = tf.train.Saver([v for v in tf.all_variables() if "Adagrad" not in v.name])
    print("Restoring all non-adagrad variables from best model in eval dir...")
    curr_ckpt = util.load_ckpt(saver, sess, "eval")
    print("Restored %s." % curr_ckpt)

    # Save this model to train dir and quit
    new_model_name = curr_ckpt.split("/")[-1].replace("bestmodel", "model")
    new_fname = os.path.join(FLAGS.log_root, "train", new_model_name)
    print("Saving model to %s..." % (new_fname))
    new_saver = tf.train.Saver() # this saver saves all variables that now exist, including Adagrad variables
    new_saver.save(sess, new_fname)
    print("Saved.")
    exit()

  def restore_best_eval_model(self):
    # load best evaluation loss so far
    best_loss = None
    best_step = None
    # goes through all event files and select the best loss achieved and return it
    event_files = sorted(glob('{}/eval/events*'.format(FLAGS.log_root)))
    for ef in event_files:
      try:
        for e in tf.train.summary_iterator(ef):
          for v in e.summary.value:
            step = e.step
            if 'running_avg_loss/decay' in v.tag:
              running_avg_loss = v.simple_value
              if best_loss is None or running_avg_loss < best_loss:
                best_loss = running_avg_loss
                best_step = step
      except:
        continue
    tf.logging.info('resotring best loss from the current logs: {}\tstep: {}'.format(best_loss, best_step))
    return best_loss

  def convert_to_coverage_model(self):
    """Load non-coverage checkpoint, add initialized extra variables for coverage, and save as new checkpoint"""
    tf.logging.info("converting non-coverage model to coverage model..")

    # initialize an entire coverage model from scratch
    sess = tf.Session(config=util.get_config())
    print("initializing everything...")
    sess.run(tf.global_variables_initializer())

    # load all non-coverage weights from checkpoint
    saver = tf.train.Saver([v for v in tf.global_variables() if "coverage" not in v.name and "Adagrad" not in v.name])
    print("restoring non-coverage variables...")
    curr_ckpt = util.load_ckpt(saver, sess)
    print("restored.")

    # save this model and quit
    new_fname = curr_ckpt + '_cov_init'
    print("saving model to %s..." % (new_fname))
    new_saver = tf.train.Saver() # this one will save all variables that now exist
    new_saver.save(sess, new_fname)
    print("saved.")
    exit()

  def convert_to_reinforce_model(self):
    """Load non-reinforce checkpoint, add initialized extra variables for reinforce, and save as new checkpoint"""
    tf.logging.info("converting non-reinforce model to reinforce model..")

    # initialize an entire reinforce model from scratch
    sess = tf.Session(config=util.get_config())
    print("initializing everything...")
    sess.run(tf.global_variables_initializer())

    # load all non-reinforce weights from checkpoint
    saver = tf.train.Saver([v for v in tf.global_variables() if "reinforce" not in v.name and "Adagrad" not in v.name])
    print("restoring non-reinforce variables...")
    curr_ckpt = util.load_ckpt(saver, sess)
    print("restored.")

    # save this model and quit
    new_fname = curr_ckpt + '_rl_init'
    print("saving model to %s..." % (new_fname))
    new_saver = tf.train.Saver() # this one will save all variables that now exist
    new_saver.save(sess, new_fname)
    print("saved.")
    exit()

  def setup_training(self):
    """Does setup before starting training (run_training)"""
    train_dir = os.path.join(FLAGS.log_root, "train")
    if not os.path.exists(train_dir): os.makedirs(train_dir)
    if FLAGS.ac_training:
      dqn_train_dir = os.path.join(FLAGS.log_root, "dqn", "train")
      if not os.path.exists(dqn_train_dir): os.makedirs(dqn_train_dir)
    #replaybuffer_pcl_path = os.path.join(FLAGS.log_root, "replaybuffer.pcl")
    #if not os.path.exists(dqn_target_train_dir): os.makedirs(dqn_target_train_dir)

    self.model.build_graph() # build the graph

    if FLAGS.convert_to_reinforce_model:
      assert (FLAGS.rl_training or FLAGS.ac_training), "To convert your pointer model to a reinforce model, run with convert_to_reinforce_model=True and either rl_training=True or ac_training=True"
      self.convert_to_reinforce_model()
    if FLAGS.convert_to_coverage_model:
      assert FLAGS.coverage, "To convert your non-coverage model to a coverage model, run with convert_to_coverage_model=True and coverage=True"
      self.convert_to_coverage_model()
    if FLAGS.restore_best_model:
      self.restore_best_model()
    saver = tf.train.Saver(max_to_keep=3) # keep 3 checkpoints at a time

    # Loads pre-trained word-embedding. By default the model learns the embedding.
    if FLAGS.embedding:
      self.vocab.LoadWordEmbedding(FLAGS.embedding, FLAGS.emb_dim)
      word_vector = self.vocab.getWordEmbedding()

    self.sv = tf.train.Supervisor(logdir=train_dir,
                       is_chief=True,
                       saver=saver,
                       summary_op=None,
                       save_summaries_secs=60, # save summaries for tensorboard every 60 secs
                       save_model_secs=60, # checkpoint every 60 secs
                       global_step=self.model.global_step,
                       init_feed_dict= {self.model.embedding_place:word_vector} if FLAGS.embedding else None
                       )
    self.summary_writer = self.sv.summary_writer
    self.sess = self.sv.prepare_or_wait_for_session(config=util.get_config())
    if FLAGS.ac_training:
      tf.logging.info('DDQN building graph')
      t1 = time.time()
      # We create a separate graph for DDQN
      self.dqn_graph = tf.Graph()
      with self.dqn_graph.as_default():
        self.dqn.build_graph() # build dqn graph
        tf.logging.info('building current network took {} seconds'.format(time.time()-t1))

        self.dqn_target.build_graph() # build dqn target graph
        tf.logging.info('building target network took {} seconds'.format(time.time()-t1))

        dqn_saver = tf.train.Saver(max_to_keep=3) # keep 3 checkpoints at a time
        self.dqn_sv = tf.train.Supervisor(logdir=dqn_train_dir,
                           is_chief=True,
                           saver=dqn_saver,
                           summary_op=None,
                           save_summaries_secs=60, # save summaries for tensorboard every 60 secs
                           save_model_secs=60, # checkpoint every 60 secs
                           global_step=self.dqn.global_step,
                           )
        self.dqn_summary_writer = self.dqn_sv.summary_writer
        self.dqn_sess = self.dqn_sv.prepare_or_wait_for_session(config=util.get_config())
      ''' #### TODO: try loading a previously saved replay buffer
      # right now this doesn't work due to running DQN on a thread
      if os.path.exists(replaybuffer_pcl_path):
        tf.logging.info('Loading Replay Buffer...')
        try:
          self.replay_buffer = pickle.load(open(replaybuffer_pcl_path, "rb"))
          tf.logging.info('Replay Buffer loaded...')
        except:
          tf.logging.info('Couldn\'t load Replay Buffer file...')
          self.replay_buffer = ReplayBuffer(self.dqn_hps)
      else:
        self.replay_buffer = ReplayBuffer(self.dqn_hps)
      tf.logging.info("Building DDQN took {} seconds".format(time.time()-t1))
      '''
      self.replay_buffer = ReplayBuffer(self.dqn_hps)
    tf.logging.info("Preparing or waiting for session...")
    tf.logging.info("Created session.")
    try:
      self.run_training() # this is an infinite loop until interrupted
    except (KeyboardInterrupt, SystemExit):
      tf.logging.info("Caught keyboard interrupt on worker. Stopping supervisor...")
      self.sv.stop()
      if FLAGS.ac_training:
        self.dqn_sv.stop()

  def run_training(self):
    """Repeatedly runs training iterations, logging loss to screen and writing summaries"""
    tf.logging.info("Starting run_training")

    if FLAGS.debug: # start the tensorflow debugger
      self.sess = tf_debug.LocalCLIDebugWrapperSession(self.sess)
      self.sess.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan)

    self.train_step = 0
    if FLAGS.ac_training:
      # DDQN training is done asynchronously along with model training
      tf.logging.info('Starting DQN training thread...')
      self.dqn_train_step = 0
      self.thrd_dqn_training = Thread(target=self.dqn_training)
      self.thrd_dqn_training.daemon = True
      self.thrd_dqn_training.start()

      watcher = Thread(target=self.watch_threads)
      watcher.daemon = True
      watcher.start()
    # starting the main thread
    tf.logging.info('Starting Seq2Seq training...')
    while True: # repeats until interrupted
      batch = self.batcher.next_batch()
      t0=time.time()
      if FLAGS.ac_training:
        # For DDQN, we first collect the model output to calculate the reward and Q-estimates
        # Then we fix the estimation either using our target network or using the true Q-values
        # This process will usually take time and we are working on improving it.
        transitions = self.model.collect_dqn_transitions(self.sess, batch, self.train_step, batch.max_art_oovs) # len(batch_size * k * max_dec_steps)
        tf.logging.info('Q-values collection time: {}'.format(time.time()-t0))
        # whenever we are working with the DDQN, we switch using DDQN graph rather than default graph
        with self.dqn_graph.as_default():
          batch_len = len(transitions)
          # we use current decoder state to predict q_estimates, use_state_prime = False
          b = ReplayBuffer.create_batch(self.dqn_hps, transitions,len(transitions), use_state_prime = False, max_art_oovs = batch.max_art_oovs)
          # we also get the next decoder state to correct the estimation, use_state_prime = True
          b_prime = ReplayBuffer.create_batch(self.dqn_hps, transitions,len(transitions), use_state_prime = True, max_art_oovs = batch.max_art_oovs)
          # use current DQN to estimate values from current decoder state
          dqn_results = self.dqn.run_test_steps(sess=self.dqn_sess, x= b._x, return_best_action=True)
          q_estimates = dqn_results['estimates'] # shape (len(transitions), vocab_size)
          dqn_best_action = dqn_results['best_action']
          #dqn_q_estimate_loss = dqn_results['loss']

          # use target DQN to estimate values for the next decoder state
          dqn_target_results = self.dqn_target.run_test_steps(self.dqn_sess, x= b_prime._x)
          q_vals_new_t = dqn_target_results['estimates'] # shape (len(transitions), vocab_size)

          # we need to expand the q_estimates to match the input batch max_art_oov
          # we use the q_estimate of UNK token for all the OOV tokens
          q_estimates = np.concatenate([q_estimates,
            np.reshape(q_estimates[:,0],[-1,1])*np.ones((len(transitions),batch.max_art_oovs))],axis=-1)
          # modify Q-estimates using the result collected from current and target DQN.
          # check algorithm 5 in the paper for more info: https://arxiv.org/pdf/1805.09461.pdf
          for i, tr in enumerate(transitions):
            if tr.done:
              q_estimates[i][tr.action] = tr.reward
            else:
              q_estimates[i][tr.action] = tr.reward + FLAGS.gamma * q_vals_new_t[i][dqn_best_action[i]]
          # use scheduled sampling to whether use true Q-values or DDQN estimation
          if FLAGS.dqn_scheduled_sampling:
            q_estimates = self.scheduled_sampling(batch_len, FLAGS.sampling_probability, b._y_extended, q_estimates)
          if not FLAGS.calculate_true_q:
            # when we are not training DDQN based on true Q-values,
            # we need to update Q-values in our transitions based on the q_estimates we collected from DQN current network.
            for trans, q_val in zip(transitions,q_estimates):
              trans.q_values = q_val # each have the size vocab_extended
          q_estimates = np.reshape(q_estimates, [FLAGS.batch_size, FLAGS.k, FLAGS.max_dec_steps, -1]) # shape (batch_size, k, max_dec_steps, vocab_size_extended)
        # Once we are done with modifying Q-values, we can use them to train the DDQN model.
        # In this paper, we use a priority experience buffer which always selects states with higher quality
        # to train the DDQN. The following line will add batch_size * max_dec_steps experiences to the replay buffer.
        # As mentioned before, the DDQN training is asynchronous. Therefore, once the related queues for DDQN training
        # are full, the DDQN will start the training.
        self.replay_buffer.add(transitions)
        # If dqn_pretrain flag is on, it means that we use a fixed Actor to only collect experiences for
        # DDQN pre-training
        if FLAGS.dqn_pretrain:
          tf.logging.info('RUNNNING DQN PRETRAIN: Adding data to relplay buffer only...')
          continue
        # if not, use the q_estimation to update the loss.
        results = self.model.run_train_steps(self.sess, batch, self.train_step, q_estimates)
      else:
          results = self.model.run_train_steps(self.sess, batch, self.train_step)
      t1=time.time()
      # get the summaries and iteration number so we can write summaries to tensorboard
      summaries = results['summaries'] # we will write these summaries to tensorboard using summary_writer
      self.train_step = results['global_step'] # we need this to update our running average loss
      tf.logging.info('seconds for training step {}: {}'.format(self.train_step, t1-t0))

      printer_helper = {}
      printer_helper['pgen_loss']= results['pgen_loss']
      if FLAGS.coverage:
        printer_helper['coverage_loss'] = results['coverage_loss']
        if FLAGS.rl_training or FLAGS.ac_training:
          printer_helper['rl_cov_total_loss']= results['reinforce_cov_total_loss']
        else:
          printer_helper['pointer_cov_total_loss'] = results['pointer_cov_total_loss']
      if FLAGS.rl_training or FLAGS.ac_training:
        printer_helper['shared_loss'] = results['shared_loss']
        printer_helper['rl_loss'] = results['rl_loss']
        printer_helper['rl_avg_logprobs'] = results['rl_avg_logprobs']
      if FLAGS.rl_training:
        printer_helper['sampled_r'] = np.mean(results['sampled_sentence_r_values'])
        printer_helper['greedy_r'] = np.mean(results['greedy_sentence_r_values'])
        printer_helper['r_diff'] = printer_helper['greedy_r'] - printer_helper['sampled_r']
      if FLAGS.ac_training:
        printer_helper['dqn_loss'] = np.mean(self.avg_dqn_loss) if len(self.avg_dqn_loss)>0 else 0

      for (k,v) in printer_helper.items():
        if not np.isfinite(v):
          raise Exception("{} is not finite. Stopping.".format(k))
        tf.logging.info('{}: {}\t'.format(k,v))
      tf.logging.info('-------------------------------------------')

      self.summary_writer.add_summary(summaries, self.train_step) # write the summaries
      if self.train_step % 100 == 0: # flush the summary writer every so often
        self.summary_writer.flush()
      if FLAGS.ac_training:
        self.dqn_summary_writer.flush()
      if self.train_step > FLAGS.max_iter: break

  def dqn_training(self):
    """ training the DDQN network."""
    try:
      while True:
        if self.dqn_train_step == FLAGS.dqn_pretrain_steps: raise SystemExit()
        _t = time.time()
        self.avg_dqn_loss = []
        avg_dqn_target_loss = []
        # Get a batch of size dqn_batch_size from replay buffer to train the model
        dqn_batch = self.replay_buffer.next_batch()
        if dqn_batch is None:
          tf.logging.info('replay buffer not loaded enough yet...')
          time.sleep(60)
          continue
        # Run train step for Current DQN model and collect the results
        dqn_results = self.dqn.run_train_steps(self.dqn_sess, dqn_batch)
        # Run test step for Target DQN model and collect the results and monitor the difference in loss between the two
        dqn_target_results = self.dqn_target.run_test_steps(self.dqn_sess, x=dqn_batch._x, y=dqn_batch._y, return_loss=True)
        self.dqn_train_step = dqn_results['global_step']
        self.dqn_summary_writer.add_summary(dqn_results['summaries'], self.dqn_train_step) # write the summaries
        self.avg_dqn_loss.append(dqn_results['loss'])
        avg_dqn_target_loss.append(dqn_target_results['loss'])
        self.dqn_train_step = self.dqn_train_step + 1
        tf.logging.info('seconds for training dqn model: {}'.format(time.time()-_t))
        # UPDATING TARGET DDQN NETWORK WITH CURRENT MODEL
        with self.dqn_graph.as_default():
          current_model_weights = self.dqn_sess.run([self.dqn.model_trainables])[0] # get weights of current model
          self.dqn_target.run_update_weights(self.dqn_sess, self.dqn_train_step, current_model_weights) # update target model weights with current model weights
        tf.logging.info('DQN loss at step {}: {}'.format(self.dqn_train_step, np.mean(self.avg_dqn_loss)))
        tf.logging.info('DQN Target loss at step {}: {}'.format(self.dqn_train_step, np.mean(avg_dqn_target_loss)))
        # sleeping is required if you want the keyboard interuption to work
        time.sleep(FLAGS.dqn_sleep_time)
    except (KeyboardInterrupt, SystemExit):
      tf.logging.info("Caught keyboard interrupt on worker. Stopping supervisor...")
      self.sv.stop()
      self.dqn_sv.stop()

  def watch_threads(self):
    """Watch example queue and batch queue threads and restart if dead."""
    while True:
      time.sleep(60)
      if not self.thrd_dqn_training.is_alive(): # if the thread is dead
        tf.logging.error('Found DQN Learning thread dead. Restarting.')
        self.thrd_dqn_training = Thread(target=self.dqn_training)
        self.thrd_dqn_training.daemon = True
        self.thrd_dqn_training.start()

  def run_eval(self):
    """Repeatedly runs eval iterations, logging to screen and writing summaries. Saves the model with the best loss seen so far."""
    self.model.build_graph() # build the graph
    saver = tf.train.Saver(max_to_keep=3) # we will keep 3 best checkpoints at a time
    sess = tf.Session(config=util.get_config())

    if FLAGS.embedding:
      sess.run(tf.global_variables_initializer(),feed_dict={self.model.embedding_place:self.word_vector})
    eval_dir = os.path.join(FLAGS.log_root, "eval") # make a subdir of the root dir for eval data
    bestmodel_save_path = os.path.join(eval_dir, 'bestmodel') # this is where checkpoints of best models are saved
    self.summary_writer = tf.summary.FileWriter(eval_dir)

    if FLAGS.ac_training:
      tf.logging.info('DDQN building graph')
      t1 = time.time()
      dqn_graph = tf.Graph()
      with dqn_graph.as_default():
        self.dqn.build_graph() # build dqn graph
        tf.logging.info('building current network took {} seconds'.format(time.time()-t1))
        self.dqn_target.build_graph() # build dqn target graph
        tf.logging.info('building target network took {} seconds'.format(time.time()-t1))
        dqn_saver = tf.train.Saver(max_to_keep=3) # keep 3 checkpoints at a time
        dqn_sess = tf.Session(config=util.get_config())
      dqn_train_step = 0
      replay_buffer = ReplayBuffer(self.dqn_hps)

    running_avg_loss = 0 # the eval job keeps a smoother, running average loss to tell it when to implement early stopping
    best_loss = self.restore_best_eval_model()  # will hold the best loss achieved so far
    train_step = 0

    while True:
      _ = util.load_ckpt(saver, sess) # load a new checkpoint
      if FLAGS.ac_training:
        _ = util.load_dqn_ckpt(dqn_saver, dqn_sess) # load a new checkpoint
      processed_batch = 0
      avg_losses = []
      # evaluate for 100 * batch_size before comparing the loss
      # we do this due to memory constraint, best to run eval on different machines with large batch size
      while processed_batch < 100*FLAGS.batch_size:
        processed_batch += FLAGS.batch_size
        batch = self.batcher.next_batch() # get the next batch
        if FLAGS.ac_training:
          t0 = time.time()
          transitions = self.model.collect_dqn_transitions(sess, batch, train_step, batch.max_art_oovs) # len(batch_size * k * max_dec_steps)
          tf.logging.info('Q values collection time: {}'.format(time.time()-t0))
          with dqn_graph.as_default():
            # if using true Q-value to train DQN network,
            # we do this as the pre-training for the DQN network to get better estimates
            batch_len = len(transitions)
            b = ReplayBuffer.create_batch(self.dqn_hps, transitions,len(transitions), use_state_prime = True, max_art_oovs = batch.max_art_oovs)
            b_prime = ReplayBuffer.create_batch(self.dqn_hps, transitions,len(transitions), use_state_prime = True, max_art_oovs = batch.max_art_oovs)
            dqn_results = self.dqn.run_test_steps(sess=dqn_sess, x= b._x, return_best_action=True)
            q_estimates = dqn_results['estimates'] # shape (len(transitions), vocab_size)
            dqn_best_action = dqn_results['best_action']

            tf.logging.info('running test step on dqn_target')
            dqn_target_results = self.dqn_target.run_test_steps(dqn_sess, x= b_prime._x)
            q_vals_new_t = dqn_target_results['estimates'] # shape (len(transitions), vocab_size)

            # we need to expand the q_estimates to match the input batch max_art_oov
            q_estimates = np.concatenate([q_estimates,np.zeros((len(transitions),batch.max_art_oovs))],axis=-1)

            tf.logging.info('fixing the action q-estimates')
            for i, tr in enumerate(transitions):
              if tr.done:
                q_estimates[i][tr.action] = tr.reward
              else:
                q_estimates[i][tr.action] = tr.reward + FLAGS.gamma * q_vals_new_t[i][dqn_best_action[i]]
            if FLAGS.dqn_scheduled_sampling:
              tf.logging.info('scheduled sampling on q-estimates')
              q_estimates = self.scheduled_sampling(batch_len, FLAGS.sampling_probability, b._y_extended, q_estimates)
            if not FLAGS.calculate_true_q:
              # when we are not training DQN based on true Q-values
              # we need to update Q-values in our transitions based on this q_estimates we collected from DQN current network.
              for trans, q_val in zip(transitions,q_estimates):
                trans.q_values = q_val # each have the size vocab_extended
            q_estimates = np.reshape(q_estimates, [FLAGS.batch_size, FLAGS.k, FLAGS.max_dec_steps, -1]) # shape (batch_size, k, max_dec_steps, vocab_size_extended)
          tf.logging.info('run eval step on seq2seq model.')
          t0=time.time()
          results = self.model.run_eval_step(sess, batch, train_step, q_estimates)
          t1=time.time()
        else:
          tf.logging.info('run eval step on seq2seq model.')
          t0=time.time()
          results = self.model.run_eval_step(sess, batch, train_step)
          t1=time.time()

        tf.logging.info('experiment: {}'.format(FLAGS.exp_name))
        tf.logging.info('processed_batch: {}, seconds for batch: {}'.format(processed_batch, t1-t0))

        printer_helper = {}
        loss = printer_helper['pgen_loss']= results['pgen_loss']
        if FLAGS.coverage:
          printer_helper['coverage_loss'] = results['coverage_loss']
          if FLAGS.rl_training or FLAGS.ac_training:
            printer_helper['rl_cov_total_loss']= results['reinforce_cov_total_loss']
          loss = printer_helper['pointer_cov_total_loss'] = results['pointer_cov_total_loss']
        if FLAGS.rl_training or FLAGS.ac_training:
          printer_helper['shared_loss'] = results['shared_loss']
          printer_helper['rl_loss'] = results['rl_loss']
          printer_helper['rl_avg_logprobs'] = results['rl_avg_logprobs']
        if FLAGS.rl_training:
          printer_helper['sampled_r'] = np.mean(results['sampled_sentence_r_values'])
          printer_helper['greedy_r'] = np.mean(results['greedy_sentence_r_values'])
          printer_helper['r_diff'] = printer_helper['greedy_r'] - printer_helper['sampled_r']
        if FLAGS.ac_training:
          printer_helper['dqn_loss'] = np.mean(self.avg_dqn_loss) if len(self.avg_dqn_loss) > 0 else 0

        for (k,v) in printer_helper.items():
          if not np.isfinite(v):
            raise Exception("{} is not finite. Stopping.".format(k))
          tf.logging.info('{}: {}\t'.format(k,v))

        # add summaries
        summaries = results['summaries']
        train_step = results['global_step']
        self.summary_writer.add_summary(summaries, train_step)

        # calculate running avg loss
        avg_losses.append(self.calc_running_avg_loss(np.asscalar(loss), running_avg_loss, train_step))
        tf.logging.info('-------------------------------------------')

      running_avg_loss = np.mean(avg_losses)
      tf.logging.info('==========================================')
      tf.logging.info('best_loss: {}\trunning_avg_loss: {}\t'.format(best_loss, running_avg_loss))
      tf.logging.info('==========================================')

      # If running_avg_loss is best so far, save this checkpoint (early stopping).
      # These checkpoints will appear as bestmodel-<iteration_number> in the eval dir
      if best_loss is None or running_avg_loss < best_loss:
        tf.logging.info('Found new best model with %.3f running_avg_loss. Saving to %s', running_avg_loss, bestmodel_save_path)
        saver.save(sess, bestmodel_save_path, global_step=train_step, latest_filename='checkpoint_best')
        best_loss = running_avg_loss

      # flush the summary writer every so often
      if train_step % 100 == 0:
        self.summary_writer.flush()
      #time.sleep(600) # run eval every 10 minute

  def main(self, unused_argv):
    if len(unused_argv) != 1: # prints a message if you've entered flags incorrectly
      raise Exception("Problem with flags: %s" % unused_argv)

    FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)
    tf.logging.set_verbosity(tf.logging.INFO) # choose what level of logging you want
    tf.logging.info('Starting seq2seq_attention in %s mode...', (FLAGS.mode))

    # Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
    flags = getattr(FLAGS,"__flags")

    if not os.path.exists(FLAGS.log_root):
      if FLAGS.mode=="train":
        os.makedirs(FLAGS.log_root)
      else:
        raise Exception("Logdir %s doesn't exist. Run in train mode to create it." % (FLAGS.log_root))

    fw = open('{}/config.txt'.format(FLAGS.log_root), 'w')
    for k, v in flags.items():
      fw.write('{}\t{}\n'.format(k, v))
    fw.close()

    self.vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size) # create a vocabulary

    # If in decode mode, set batch_size = beam_size
    # Reason: in decode mode, we decode one example at a time.
    # On each step, we have beam_size-many hypotheses in the beam, so we need to make a batch of these hypotheses.
    if FLAGS.mode == 'decode':
      FLAGS.batch_size = FLAGS.beam_size

    # If single_pass=True, check we're in decode mode
    if FLAGS.single_pass and FLAGS.mode!='decode':
      raise Exception("The single_pass flag should only be True in decode mode")

    # Make a namedtuple hps, containing the values of the hyperparameters that the model needs

    hparam_list = ['mode', 'lr', 'gpu_num',
    #'sampled_greedy_flag', 
    'gamma', 'eta', 
    'fixed_eta', 'reward_function', 'intradecoder', 
    'use_temporal_attention', 'ac_training','rl_training', 'matrix_attention', 'calculate_true_q',
    'enc_hidden_dim', 'dec_hidden_dim', 'k', 
    'scheduled_sampling', 'sampling_probability','fixed_sampling_probability',
    'alpha', 'hard_argmax', 'greedy_scheduled_sampling',
    'adagrad_init_acc', 'rand_unif_init_mag', 
    'trunc_norm_init_std', 'max_grad_norm', 
    'emb_dim', 'batch_size', 'max_dec_steps', 'max_enc_steps',
    'dqn_scheduled_sampling', 'dqn_sleep_time', 'E2EBackProp',
    'coverage', 'cov_loss_wt', 'pointer_gen']
    hps_dict = {}
    for key,val in flags.items(): # for each flag
      if key in hparam_list: # if it's in the list
        hps_dict[key] = val.value # add it to the dict
    if FLAGS.ac_training:
      hps_dict.update({'dqn_input_feature_len':(FLAGS.dec_hidden_dim)})
    self.hps = namedtuple("HParams", hps_dict.keys())(**hps_dict)
    # creating all the required parameters for DDQN model.
    if FLAGS.ac_training:
      hparam_list = ['lr', 'dqn_gpu_num', 
      'dqn_layers', 
      'dqn_replay_buffer_size', 
      'dqn_batch_size', 
      'dqn_target_update',
      'dueling_net',
      'dqn_polyak_averaging',
      'dqn_sleep_time',
      'dqn_scheduled_sampling',
      'max_grad_norm']
      hps_dict = {}
      for key,val in flags.items(): # for each flag
        if key in hparam_list: # if it's in the list
          hps_dict[key] = val.value # add it to the dict
      hps_dict.update({'dqn_input_feature_len':(FLAGS.dec_hidden_dim)})
      hps_dict.update({'vocab_size':self.vocab.size()})
      self.dqn_hps = namedtuple("HParams", hps_dict.keys())(**hps_dict)

    # Create a batcher object that will create minibatches of data
    self.batcher = Batcher(FLAGS.data_path, self.vocab, self.hps, single_pass=FLAGS.single_pass, decode_after=FLAGS.decode_after)

    tf.set_random_seed(111) # a seed value for randomness

    if self.hps.mode == 'train':
      print("creating model...")
      self.model = SummarizationModel(self.hps, self.vocab)
      if FLAGS.ac_training:
        # current DQN with paramters \Psi
        self.dqn = DQN(self.dqn_hps,'current')
        # target DQN with paramters \Psi^{\prime}
        self.dqn_target = DQN(self.dqn_hps,'target')
      self.setup_training()
    elif self.hps.mode == 'eval':
      self.model = SummarizationModel(self.hps, self.vocab)
      if FLAGS.ac_training:
        self.dqn = DQN(self.dqn_hps,'current')
        self.dqn_target = DQN(self.dqn_hps,'target')
      self.run_eval()
    elif self.hps.mode == 'decode':
      decode_model_hps = self.hps  # This will be the hyperparameters for the decoder model
      decode_model_hps = self.hps._replace(max_dec_steps=1) # The model is configured with max_dec_steps=1 because we only ever run one step of the decoder at a time (to do beam search). Note that the batcher is initialized with max_dec_steps equal to e.g. 100 because the batches need to contain the full summaries
      model = SummarizationModel(decode_model_hps, self.vocab)
      if FLAGS.ac_training:
        # We need our target DDQN network for collecting Q-estimation at each decoder step.
        dqn_target = DQN(self.dqn_hps,'target')
      else:
        dqn_target = None
      decoder = BeamSearchDecoder(model, self.batcher, self.vocab, dqn = dqn_target)
      decoder.decode() # decode indefinitely (unless single_pass=True, in which case deocde the dataset exactly once)
    else:
      raise ValueError("The 'mode' flag must be one of train/eval/decode")

  # Scheduled sampling used for either selecting true Q-estimates or the DDQN estimation
  # based on https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/ScheduledEmbeddingTrainingHelper
  def scheduled_sampling(self, batch_size, sampling_probability, true, estimate):
    with variable_scope.variable_scope("ScheduledEmbedding"):
      # Return -1s where we do not sample, and sample_ids elsewhere
      select_sampler = bernoulli.Bernoulli(probs=sampling_probability, dtype=tf.bool)
      select_sample = select_sampler.sample(sample_shape=batch_size)
      sample_ids = array_ops.where(
                  select_sample,
                  tf.range(batch_size),
                  gen_array_ops.fill([batch_size], -1))
      where_sampling = math_ops.cast(
          array_ops.where(sample_ids > -1), tf.int32)
      where_not_sampling = math_ops.cast(
          array_ops.where(sample_ids <= -1), tf.int32)
      _estimate = array_ops.gather_nd(estimate, where_sampling)
      _true = array_ops.gather_nd(true, where_not_sampling)

      base_shape = array_ops.shape(true)
      result1 = array_ops.scatter_nd(indices=where_sampling, updates=_estimate, shape=base_shape)
      result2 = array_ops.scatter_nd(indices=where_not_sampling, updates=_true, shape=base_shape)
      result = result1 + result2
      return result1 + result2
コード例 #29
0
def main(unused_argv):
    if len(unused_argv
           ) != 1:  # prints a message if you've entered flags incorrectly
        raise Exception("Problem with flags: %s" % unused_argv)

    extractor = 'bert' if FLAGS.use_bert else 'lambdamart'
    pretrained_dataset = FLAGS.dataset_name
    if FLAGS.dataset_name == 'duc_2004':
        pretrained_dataset = 'cnn_dm'
    if FLAGS.singles_and_pairs == 'both':
        FLAGS.exp_name = FLAGS.dataset_name + '_' + FLAGS.exp_name + extractor + '_both'
        FLAGS.pretrained_path = os.path.join(FLAGS.log_root,
                                             pretrained_dataset + '_both')
        dataset_articles = FLAGS.dataset_name
    else:
        FLAGS.exp_name = FLAGS.dataset_name + '_' + FLAGS.exp_name + extractor + '_singles'
        FLAGS.pretrained_path = os.path.join(FLAGS.log_root,
                                             pretrained_dataset + '_singles')
        dataset_articles = FLAGS.dataset_name + '_singles'

    if FLAGS.upper_bound:
        FLAGS.exp_name = FLAGS.exp_name + '_upperbound'
        ssi_list = None  # this is if we are doing the upper bound evaluation (ssi_list comes straight from the groundtruth)
    else:
        my_log_dir = os.path.join(
            log_dir, '%s_%s_%s' %
            (FLAGS.dataset_name, extractor, FLAGS.singles_and_pairs))
        with open(os.path.join(my_log_dir, 'ssi.pkl'), 'rb') as f:
            ssi_list = pickle.load(f)

    print('Running statistics on %s' % FLAGS.exp_name)

    if FLAGS.dataset_name != "":
        FLAGS.data_path = os.path.join(FLAGS.data_root, FLAGS.dataset_name,
                                       FLAGS.dataset_split + '*')
    if not os.path.exists(os.path.join(
            FLAGS.data_root, FLAGS.dataset_name)) or len(
                os.listdir(os.path.join(FLAGS.data_root,
                                        FLAGS.dataset_name))) == 0:
        raise Exception('No TF example data found at %s.' %
                        os.path.join(FLAGS.data_root, FLAGS.dataset_name))

    logging.set_verbosity(
        logging.INFO)  # choose what level of logging you want
    logging.info('Starting seq2seq_attention in %s mode...', (FLAGS.mode))

    # Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
    FLAGS.exp_name = FLAGS.exp_name if FLAGS.exp_name != '' else FLAGS.dataset_name
    FLAGS.actual_log_root = FLAGS.log_root
    FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)

    print(util.bcolors.OKGREEN + "Experiment path: " + FLAGS.log_root +
          util.bcolors.ENDC)

    if FLAGS.dataset_name == 'duc_2004':
        vocab = Vocab(FLAGS.vocab_path + '_' + 'cnn_dm',
                      FLAGS.vocab_size)  # create a vocabulary
    else:
        vocab = Vocab(FLAGS.vocab_path + '_' + FLAGS.dataset_name,
                      FLAGS.vocab_size)  # create a vocabulary

    # If in decode mode, set batch_size = beam_size
    # Reason: in decode mode, we decode one example at a time.
    # On each step, we have beam_size-many hypotheses in the beam, so we need to make a batch of these hypotheses.
    if FLAGS.mode == 'decode':
        FLAGS.batch_size = FLAGS.beam_size

    # If single_pass=True, check we're in decode mode
    if FLAGS.single_pass and FLAGS.mode != 'decode':
        raise Exception(
            "The single_pass flag should only be True in decode mode")

    # Make a namedtuple hps, containing the values of the hyperparameters that the model needs
    hparam_list = [
        item for item in list(FLAGS.flag_values_dict().keys()) if item != '?'
    ]
    hps_dict = {}
    for key, val in FLAGS.__flags.items():  # for each flag
        if key in hparam_list:  # if it's in the list
            hps_dict[key] = val.value  # add it to the dict
    hps = namedtuple("HParams", list(hps_dict.keys()))(**hps_dict)

    tf.set_random_seed(113)  # a seed value for randomness

    decode_model_hps = hps._replace(
        max_dec_steps=1
    )  # The model is configured with max_dec_steps=1 because we only ever run one step of the decoder at a time (to do beam search). Note that the batcher is initialized with max_dec_steps equal to e.g. 100 because the batches need to contain the full summaries

    if len(unused_argv
           ) != 1:  # prints a message if you've entered flags incorrectly
        raise Exception("Problem with flags: %s" % unused_argv)
    start_time = time.time()
    np.random.seed(random_seed)
    source_dir = os.path.join(FLAGS.data_root, dataset_articles)
    source_files = sorted(glob.glob(source_dir + '/' + dataset_split + '*'))

    total = len(
        source_files
    ) * 1000 if 'cnn' in dataset_articles or 'xsum' in dataset_articles else len(
        source_files)
    example_generator = data.example_generator(source_dir + '/' +
                                               dataset_split + '*',
                                               True,
                                               False,
                                               should_check_valid=False)
    # batcher = Batcher(None, vocab, hps, single_pass=FLAGS.single_pass)
    model = SummarizationModel(decode_model_hps, vocab)
    decoder = BeamSearchDecoder(model, None, vocab)
    decoder.decode_iteratively(example_generator, total, names_to_types,
                               ssi_list, hps)
コード例 #30
0
  def main(self, unused_argv):
    if len(unused_argv) != 1: # prints a message if you've entered flags incorrectly
      raise Exception("Problem with flags: %s" % unused_argv)

    FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)
    tf.logging.set_verbosity(tf.logging.INFO) # choose what level of logging you want
    tf.logging.info('Starting seq2seq_attention in %s mode...', (FLAGS.mode))

    # Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
    flags = getattr(FLAGS,"__flags")

    if not os.path.exists(FLAGS.log_root):
      if FLAGS.mode=="train":
        os.makedirs(FLAGS.log_root)
      else:
        raise Exception("Logdir %s doesn't exist. Run in train mode to create it." % (FLAGS.log_root))

    fw = open('{}/config.txt'.format(FLAGS.log_root), 'w')
    for k, v in flags.items():
      fw.write('{}\t{}\n'.format(k, v))
    fw.close()

    self.vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size) # create a vocabulary

    # If in decode mode, set batch_size = beam_size
    # Reason: in decode mode, we decode one example at a time.
    # On each step, we have beam_size-many hypotheses in the beam, so we need to make a batch of these hypotheses.
    if FLAGS.mode == 'decode':
      FLAGS.batch_size = FLAGS.beam_size

    # If single_pass=True, check we're in decode mode
    if FLAGS.single_pass and FLAGS.mode!='decode':
      raise Exception("The single_pass flag should only be True in decode mode")

    # Make a namedtuple hps, containing the values of the hyperparameters that the model needs

    hparam_list = ['mode', 'lr', 'gpu_num',
    #'sampled_greedy_flag', 
    'gamma', 'eta', 
    'fixed_eta', 'reward_function', 'intradecoder', 
    'use_temporal_attention', 'ac_training','rl_training', 'matrix_attention', 'calculate_true_q',
    'enc_hidden_dim', 'dec_hidden_dim', 'k', 
    'scheduled_sampling', 'sampling_probability','fixed_sampling_probability',
    'alpha', 'hard_argmax', 'greedy_scheduled_sampling',
    'adagrad_init_acc', 'rand_unif_init_mag', 
    'trunc_norm_init_std', 'max_grad_norm', 
    'emb_dim', 'batch_size', 'max_dec_steps', 'max_enc_steps',
    'dqn_scheduled_sampling', 'dqn_sleep_time', 'E2EBackProp',
    'coverage', 'cov_loss_wt', 'pointer_gen']
    hps_dict = {}
    for key,val in flags.items(): # for each flag
      if key in hparam_list: # if it's in the list
        hps_dict[key] = val.value # add it to the dict
    if FLAGS.ac_training:
      hps_dict.update({'dqn_input_feature_len':(FLAGS.dec_hidden_dim)})
    self.hps = namedtuple("HParams", hps_dict.keys())(**hps_dict)
    # creating all the required parameters for DDQN model.
    if FLAGS.ac_training:
      hparam_list = ['lr', 'dqn_gpu_num', 
      'dqn_layers', 
      'dqn_replay_buffer_size', 
      'dqn_batch_size', 
      'dqn_target_update',
      'dueling_net',
      'dqn_polyak_averaging',
      'dqn_sleep_time',
      'dqn_scheduled_sampling',
      'max_grad_norm']
      hps_dict = {}
      for key,val in flags.items(): # for each flag
        if key in hparam_list: # if it's in the list
          hps_dict[key] = val.value # add it to the dict
      hps_dict.update({'dqn_input_feature_len':(FLAGS.dec_hidden_dim)})
      hps_dict.update({'vocab_size':self.vocab.size()})
      self.dqn_hps = namedtuple("HParams", hps_dict.keys())(**hps_dict)

    # Create a batcher object that will create minibatches of data
    self.batcher = Batcher(FLAGS.data_path, self.vocab, self.hps, single_pass=FLAGS.single_pass, decode_after=FLAGS.decode_after)

    tf.set_random_seed(111) # a seed value for randomness

    if self.hps.mode == 'train':
      print("creating model...")
      self.model = SummarizationModel(self.hps, self.vocab)
      if FLAGS.ac_training:
        # current DQN with paramters \Psi
        self.dqn = DQN(self.dqn_hps,'current')
        # target DQN with paramters \Psi^{\prime}
        self.dqn_target = DQN(self.dqn_hps,'target')
      self.setup_training()
    elif self.hps.mode == 'eval':
      self.model = SummarizationModel(self.hps, self.vocab)
      if FLAGS.ac_training:
        self.dqn = DQN(self.dqn_hps,'current')
        self.dqn_target = DQN(self.dqn_hps,'target')
      self.run_eval()
    elif self.hps.mode == 'decode':
      decode_model_hps = self.hps  # This will be the hyperparameters for the decoder model
      decode_model_hps = self.hps._replace(max_dec_steps=1) # The model is configured with max_dec_steps=1 because we only ever run one step of the decoder at a time (to do beam search). Note that the batcher is initialized with max_dec_steps equal to e.g. 100 because the batches need to contain the full summaries
      model = SummarizationModel(decode_model_hps, self.vocab)
      if FLAGS.ac_training:
        # We need our target DDQN network for collecting Q-estimation at each decoder step.
        dqn_target = DQN(self.dqn_hps,'target')
      else:
        dqn_target = None
      decoder = BeamSearchDecoder(model, self.batcher, self.vocab, dqn = dqn_target)
      decoder.decode() # decode indefinitely (unless single_pass=True, in which case deocde the dataset exactly once)
    else:
      raise ValueError("The 'mode' flag must be one of train/eval/decode")
コード例 #31
0
def main(unused_argv):
    if len(unused_argv
           ) != 1:  # prints a message if you've entered flags incorrectly
        raise Exception("Problem with flags: %s" % unused_argv)

    tf.logging.set_verbosity(
        tf.logging.INFO)  # choose what level of logging you want
    tf.logging.info('Starting seq2seq_attention in %s mode...', (FLAGS.mode))

    # Change log_root to FLAGS.log_root/FLAGS.exp_name and create the dir if necessary
    FLAGS.log_root = os.path.join(FLAGS.log_root, FLAGS.exp_name)
    if not os.path.exists(FLAGS.log_root):
        if FLAGS.mode == "train":
            os.makedirs(FLAGS.log_root)
        else:
            raise Exception(
                "Logdir %s doesn't exist. Run in train mode to create it." %
                (FLAGS.log_root))

    vocab = Vocab(FLAGS.vocab_path, FLAGS.vocab_size)  # create a vocabulary

    # If in decode mode, set batch_size = beam_size
    # Reason: in decode mode, we decode one example at a time.
    # On each step, we have beam_size-many hypotheses in the beam, so we need to make a batch of these hypotheses.
    if FLAGS.mode == 'decode':
        FLAGS.batch_size = FLAGS.beam_size

    # If single_pass=True, check we're in decode mode
    if FLAGS.single_pass and FLAGS.mode != 'decode':
        raise Exception(
            "The single_pass flag should only be True in decode mode")

    # Make a namedtuple hps, containing the values of the hyperparameters that the model needs
    hparam_list = [
        'mode', 'lr', 'adagrad_init_acc', 'rand_unif_init_mag',
        'trunc_norm_init_std', 'max_grad_norm', 'hidden_dim', 'emb_dim',
        'batch_size', 'max_dec_steps', 'max_enc_steps', 'coverage',
        'cov_loss_wt', 'pointer_gen', 'vocab_size'
    ]
    hps_dict = {}
    for key, val in FLAGS.__flags.items():  # for each flag
        if key in hparam_list:  # if it's in the list
            hps_dict[key] = val  # add it to the dict
    hps = namedtuple("HParams", hps_dict.keys())(**hps_dict)

    # Create a batcher object that will create minibatches of data
    batcher = Batcher(FLAGS.data_path,
                      vocab,
                      hps,
                      single_pass=FLAGS.single_pass)

    tf.set_random_seed(111)  # a seed value for randomness

    if hps.mode == 'train':
        print("creating model...")
        model = SummarizationModel(hps, vocab)
        setup_training(model, batcher)

    elif hps.mode == 'eval':
        model = SummarizationModel(hps, vocab)
        run_eval(model, batcher, vocab)

    elif hps.mode == 'decode':
        decode_model_hps = hps  # This will be the hyperparameters for the decoder model
        decode_model_hps = hps._replace(
            max_dec_steps=1
        )  # The model is configured with max_dec_steps=1 because we only ever run one step of the decoder at a time (to do beam search). Note that the batcher is initialized with max_dec_steps equal to e.g. 100 because the batches need to contain the full summaries
        model = SummarizationModel(decode_model_hps, vocab)
        decoder = BeamSearchDecoder(model, batcher, vocab)
        decoder.decode(
        )  # decode indefinitely (unless single_pass=True, in which case deocde the dataset exactly once)
    else:
        raise ValueError("The 'mode' flag must be one of train/eval/decode")
コード例 #32
0
ファイル: pretrain.py プロジェクト: jcyk/copyisallyouneed
def main(args, local_rank):

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO)

    vocabs = dict()
    vocabs['src'] = Vocab(args.src_vocab, 0, [BOS, EOS])
    vocabs['tgt'] = Vocab(args.tgt_vocab, 0, [BOS, EOS])

    if args.world_size == 1 or (dist.get_rank() == 0):
        logger.info(args)
        for name in vocabs:
            logger.info("vocab %s, size %d, coverage %.3f", name,
                        vocabs[name].size, vocabs[name].coverage)

    set_seed(19940117)

    #device = torch.device('cpu')
    torch.cuda.set_device(local_rank)
    device = torch.device('cuda', local_rank)

    if args.resume_ckpt:
        model = MatchingModel.from_pretrained(vocabs, args.resume_ckpt)
    else:
        model = MatchingModel.from_params(vocabs, args.layers, args.embed_dim,
                                          args.ff_embed_dim, args.num_heads,
                                          args.dropout, args.output_dim,
                                          args.bow)

    if args.world_size > 1:
        set_seed(19940117 + dist.get_rank())

    model = model.to(device)

    if args.resume_ckpt:
        dev_data = DataLoader(vocabs,
                              args.dev_data,
                              args.dev_batch_size,
                              addition=args.additional_negs)
        acc = validate(model, dev_data, device)
        logger.info("initialize from %s, initial acc %.2f", args.resume_ckpt,
                    acc)

    optimizer = Adam(model.parameters(),
                     lr=args.lr,
                     betas=(0.9, 0.98),
                     eps=1e-9)
    lr_schedule = get_linear_schedule_with_warmup(optimizer, args.warmup_steps,
                                                  args.total_train_steps)
    train_data = DataLoader(vocabs,
                            args.train_data,
                            args.per_gpu_train_batch_size,
                            worddrop=args.worddrop,
                            addition=args.additional_negs)
    global_step, step, epoch = 0, 0, 0
    tr_stat = Statistics()
    logger.info("start training")
    model.train()
    while global_step <= args.total_train_steps:
        for batch in train_data:
            batch = move_to_device(batch, device)
            loss, acc, bsz = model(batch['src_tokens'], batch['tgt_tokens'],
                                   args.label_smoothing)
            tr_stat.update({
                'loss': loss.item() * bsz,
                'nsamples': bsz,
                'acc': acc * bsz
            })
            tr_stat.step()
            loss.backward()

            step += 1
            if not (step % args.gradient_accumulation_steps
                    == -1 % args.gradient_accumulation_steps):
                continue

            if args.world_size > 1:
                average_gradients(model)

            torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
            optimizer.step()
            lr_schedule.step()
            optimizer.zero_grad()
            global_step += 1

            if args.world_size == 1 or (dist.get_rank() == 0):
                if global_step % args.print_every == -1 % args.print_every:
                    logger.info("epoch %d, step %d, loss %.3f, acc %.3f",
                                epoch, global_step,
                                tr_stat['loss'] / tr_stat['nsamples'],
                                tr_stat['acc'] / tr_stat['nsamples'])
                    tr_stat = Statistics()
                if global_step > args.warmup_steps and global_step % args.eval_every == -1 % args.eval_every:
                    dev_data = DataLoader(vocabs,
                                          args.dev_data,
                                          args.dev_batch_size,
                                          addition=args.additional_negs)
                    acc = validate(model, dev_data, device)
                    logger.info("epoch %d, step %d, dev, dev acc %.2f", epoch,
                                global_step, acc)
                    save_path = '%s/epoch%d_batch%d_acc%.2f' % (
                        args.ckpt, epoch, global_step, acc)
                    model.save(args, save_path)
                    model.train()
            if global_step > args.total_train_steps:
                break
        epoch += 1
    logger.info('rank %d, finish training after %d steps', local_rank,
                global_step)