import pickle import matplotlib.pyplot as plt import pandas as pd from sklearn.preprocessing import MinMaxScaler import numpy as np from dataFrameUtilities import selectTime, selectColumns, addRollingMeanColumns input = open('data.txt', 'rb') data = pickle.load(input) input.close() timeSelected = selectTime(data, '2016-01-15', '2019-03-06') pain = selectColumns(timeSelected, ['forearmElbowPain']) pain = addRollingMeanColumns(pain, ['forearmElbowPain'], 21) timeSelected[ 'swimAndSurf'] = timeSelected['swimming'] + timeSelected['surfing'] timeSelected['climbs'] = timeSelected['climbing'] + timeSelected['viaFerrata'] env = addRollingMeanColumns(timeSelected, ['whatPulseT', 'swimAndSurf', 'climbs'], 21) envOrdi = env[['whatPulseT']] envSport = env[['swimAndSurf', 'climbs']] envSportMean = env[[ 'whatPulseTRollingMean', 'swimAndSurfRollingMean', 'climbsRollingMean' ]] fig, axes = plt.subplots(nrows=4, ncols=1)
import pickle import matplotlib.pyplot as plt import numpy as np import pandas as pd from dataFrameUtilities import addRollingMeanColumns, selectColumns, selectTime from sklearn.preprocessing import MinMaxScaler input = open("data.txt", "rb") data = pickle.load(input) input.close() timeSelected = selectTime(data, "2016-01-15", "2019-03-06") pain = selectColumns(timeSelected, ["forearmElbowPain"]) pain = addRollingMeanColumns(pain, ["forearmElbowPain"], 21) timeSelected[ "swimAndSurf"] = timeSelected["swimming"] + timeSelected["surfing"] timeSelected["climbs"] = timeSelected["climbing"] + timeSelected["viaFerrata"] env = addRollingMeanColumns(timeSelected, ["whatPulseT", "swimAndSurf", "climbs"], 21) envOrdi = env[["whatPulseT"]] envSport = env[["swimAndSurf", "climbs"]] envSportMean = env[[ "whatPulseTRollingMean", "swimAndSurfRollingMean", "climbsRollingMean" ]] fig, axes = plt.subplots(nrows=4, ncols=1)
import matplotlib.pyplot as plt import numpy as np import pandas as pd from dataFrameUtilities import addRollingMeanColumns, selectColumns, selectTime from sklearn.preprocessing import MinMaxScaler input = open("../data/preprocessed/preprocessedDataParticipant1.txt", "rb") data = pickle.load(input) input.close() timeSelected = selectTime(data, "2016-03-01", "2019-03-06") timeSelected["foreheadAndEyesPain"] = timeSelected[ "foreheadAndEyesPain"] + timeSelected["aroundEyesPain"] pain = selectColumns(timeSelected, ["foreheadAndEyesPain"]) pain = addRollingMeanColumns(pain, ["foreheadAndEyesPain"], 21) env = addRollingMeanColumns(timeSelected, ["manicTimeT", "eyeRelatedActivities"], 21) envRollingMean = selectColumns( env, ["manicTimeTRollingMean", "eyeRelatedActivitiesRollingMean"]) envBrut = selectColumns(env, ["manicTimeT", "eyeRelatedActivities"]) fig, axes = plt.subplots(nrows=3, ncols=1) pain.plot(ax=axes[0]) envBrut.plot(ax=axes[1]) envRollingMean.plot(ax=axes[2]) leg = plt.legend(loc="best") leg.set_draggable(True)
import pickle import matplotlib.pyplot as plt import pandas as pd from sklearn.preprocessing import MinMaxScaler import numpy as np from dataFrameUtilities import selectTime, selectColumns, addRollingMeanColumns input = open('data.txt', 'rb') data = pickle.load(input) input.close() timeSelected = selectTime(data, '2016-01-15', '2019-03-06') pain = selectColumns(timeSelected, ['handsAndFingerPain']) pain = addRollingMeanColumns(pain, ['handsAndFingerPain'], 21) timeSelected[ 'swimAndSurf'] = timeSelected['swimming'] + timeSelected['surfing'] timeSelected['climbs'] = timeSelected['climbing'] + timeSelected['viaFerrata'] env = addRollingMeanColumns(timeSelected, ['whatPulseT', 'swimAndSurf', 'climbs'], 21) envOrdi = env[['whatPulseT']] envSport = env[['swimAndSurf', 'climbs']] envSportMean = env[[ 'whatPulseTRollingMean', 'swimAndSurfRollingMean', 'climbsRollingMean' ]] fig, axes = plt.subplots(nrows=4, ncols=1)
import pickle import matplotlib.pyplot as plt import numpy as np import pandas as pd from dataFrameUtilities import addRollingMeanColumns, selectColumns, selectTime input = open("data.txt", "rb") data = pickle.load(input) input.close() timeSelected = selectTime(data, "2016-09-01", "2019-10-20") pain = selectColumns(timeSelected, ["kneePain"]) pain = addRollingMeanColumns(pain, ["kneePain"], 21) env = addRollingMeanColumns(timeSelected, ["steps", "denivelation"], 21) envRollingMean = selectColumns(env, ["stepsRollingMean", "denivelationRollingMean"]) envBrut = selectColumns(env, ["steps", "denivelation"]) fig, axes = plt.subplots(nrows=3, ncols=1) pain.plot(ax=axes[0]) envBrut.plot(ax=axes[1]) envRollingMean.plot(ax=axes[2]) plt.legend(loc="best") plt.show()
import matplotlib.pyplot as plt import pandas as pd from sklearn.preprocessing import MinMaxScaler import numpy as np from dataFrameUtilities import selectTime, selectColumns, addRollingMeanColumns input = open('data.txt', 'rb') data = pickle.load(input) input.close() timeSelected = selectTime(data, '2016-03-01', '2019-03-06') timeSelected['foreheadAndEyesPain'] = timeSelected[ 'foreheadAndEyesPain'] + timeSelected['aroundEyesPain'] pain = selectColumns(timeSelected, ['foreheadAndEyesPain']) pain = addRollingMeanColumns(pain, ['foreheadAndEyesPain'], 21) env = addRollingMeanColumns(timeSelected, ['manicTimeT', 'eyeRelatedActivities'], 21) envRollingMean = selectColumns( env, ['manicTimeTRollingMean', 'eyeRelatedActivitiesRollingMean']) envBrut = selectColumns(env, ['manicTimeT', 'eyeRelatedActivities']) fig, axes = plt.subplots(nrows=3, ncols=1) pain.plot(ax=axes[0]) envBrut.plot(ax=axes[1]) envRollingMean.plot(ax=axes[2]) plt.legend(loc='best') plt.show()
import pickle import matplotlib.pyplot as plt import numpy as np import pandas as pd from dataFrameUtilities import addRollingMeanColumns, selectColumns, selectTime from sklearn.preprocessing import MinMaxScaler input = open("data.txt", "rb") data = pickle.load(input) input.close() timeSelected = selectTime(data, "2016-01-15", "2019-03-06") pain = selectColumns(timeSelected, ["handsAndFingerPain"]) pain = addRollingMeanColumns(pain, ["handsAndFingerPain"], 21) timeSelected["swimAndSurf"] = timeSelected["swimming"] + timeSelected["surfing"] timeSelected["climbs"] = timeSelected["climbing"] + timeSelected["viaFerrata"] env = addRollingMeanColumns(timeSelected, ["whatPulseT", "swimAndSurf", "climbs"], 21) envOrdi = env[["whatPulseT"]] envSport = env[["swimAndSurf", "climbs"]] envSportMean = env[ ["whatPulseTRollingMean", "swimAndSurfRollingMean", "climbsRollingMean"] ] fig, axes = plt.subplots(nrows=4, ncols=1) pain.plot(ax=axes[0])