def deletar(name): all_face_encodings = {} pickle_file = 'dataset_faces.pickle' try: all_face_encodings = pickle.load(pickle_file) except: print("Arquivo vazio") try: all_face_encodings.pop(name) pickle.safe_dump(all_face_encodings, pickle_file) print("Depois : " + str(all_face_encodings)) except: return "Ocorreu um erro ao salvar os dados" return "Usuário removido com sucesso."
def atualizar(file, name): all_face_encodings = {} pickle_file = 'dataset_faces.pickle' load_image = face_recognition.load_image_file(file) image_encoding = face_recognition.face_encodings(load_image)[0] try: all_face_encodings = pickle.load(pickle_file) except: print("Arquivo vazio") try: all_face_encodings[name] = image_encoding pickle.safe_dump(all_face_encodings, pickle_file) except: raise return "Ocorreu um erro ao salvar os dados" return "Foto atualizada com sucesso"
def cadastrar(file, name): all_face_encodings = {} pickle_file = 'dataset_faces.pickle' load_image = face_recognition.load_image_file(file) image_encoding = face_recognition.face_encodings(load_image)[0] try: all_face_encodings = pickle.load(pickle_file) except: print("Arquivo vazio") print("Depois : " + str(all_face_encodings)) try: all_face_encodings[name] = image_encoding pickle.safe_dump(all_face_encodings, pickle_file) except: raise return "Ocorreu um erro ao salvar os dados" return image_encoding
def test_compress(): """Test whether data compression is working. """ pk.safe_dump({"value": 1}, path_gz, enable_verbose=False) assert pk.load(path_gz, enable_verbose=False) == {"value": 1} os.remove(path_gz)
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function from dataIO import js from dataIO import pk from dataIO import textfile data = { "name": "John", "age": 18, "favorite number": 3.1415926535, "hobby": ["Music", "Sport"] } js.safe_dump(data, "data.json", indent_format=True, float_precision=2, enable_verbose=True) pk.safe_dump(data, "data.pickle", enable_verbose=True) s = "This\nis\nPython!" textfile.write(s, "text.txt")