def exampleUsage(): '''This is just here to show how to run the models''' training_data = data.loadTraining() out = gaussianNBayes(training_data['xlabels'], training_data['ylabels'], \ training_data['xlabels']) out1 = ridgeRegression(training_data['xlabels'], training_data['ylabels'], \ training_data['xlabels'], 3) out2 = randomForest(training_data['xlabels'], training_data['ylabels'], \ training_data['xlabels'])
import pkg_resources import sys import os import sklearn import numpy as np from sklearn.neural_network import MLPClassifier from sklearn.grid_search import GridSearchCV from sklearn import cross_validation import dataIO as data import datetime from grid_search import grid_search import time full_train = data.loadTraining() x_train = full_train['xlabels'] y_train = full_train['ylabels'] full_test = data.loadTest() x_test = full_test['xlabels'] # the 2 values for alpha are needed because there needs to be 2 parameters for # the grid search. Could just remove the grid search parameters = {'hidden_layer_sizes': [tuple([10] * 1)],\ 'activation': ['logistic'], \ 'learning_rate': ['constant'], \ 'alpha': [7.0] * 2 } num_folds = np.prod(np.array([len(parameters[key]) for key in parameters])) print "Number of folds: " + str(num_folds)
'rf_regress_train.csv', 'rf_regress_train_2.csv', 'svm_regress_train.csv' ] testDataFiles = ['ada_regress_test.csv', 'gnb_class_test.csv', 'knn_regress_test.csv', 'log_regress_test.csv', 'nn_class_test.csv', 'rf_regress_test.csv', 'rf_regress_test_2.csv', 'svm_regress_test.csv' ] y_train = data.loadTraining()['ylabels'] x_train = np.zeros((len(trainingDataFiles), len(y_train))) x_train = np.transpose([loadModelOut(model) for model in trainingDataFiles]) x_test = np.zeros((len(testDataFiles), len(y_train))) x_test = np.transpose([loadModelOut(model) for model in testDataFiles]) in_layer = len(trainingDataFiles) parameters = {'hidden_layer_sizes': ((in_layer,), (in_layer, in_layer/2), (in_layer, 2*in_layer/3, in_layer/3)), 'alpha': np.logspace(-5, -3, 15), 'learning_rate': ('constant', 'invscaling') } kf_total = cross_validation.KFold(len(x_train), n_folds=10,\