__author__ = "ponomarevandrew" import recs import dataModel import numpy as np dirs = ["BC"] for dir in dirs: prefs_test, data_test, matrix_test = dataModel.loadMovielens("/u1.test", matrix=dir) b_u = np.loadtxt(dir + "/b_u.txt") b_v = np.loadtxt(dir + "/b_v.txt") u_f = np.loadtxt(dir + "/u_f.txt") v_f = np.loadtxt(dir + "/v_f.txt") f = open(dir + "/mu.txt", "r") mu = float(f.read()) mae = recs.maeSVD(prefs_test, mu, b_u, b_v, u_f, v_f) f = open(dir + "/mae_stoch_svd.txt", "w") f.write(str(mae)) print "!233131"
__author__ = 'ponomarevandrew' import dataModel import recs import numpy as np a = np.arange(111) np.savetxt("A/sims.txt", a) b = np.loadtxt("A/sims.txt") dirs = ["A","C","BC"] for dir in dirs: prefs,data,matrix = dataModel.loadMovielens('/u1.base',matrix = dir) #matrix_A = recs.get_similarity_matrix(matrix, method ='knn' ) #np.savetxt(dir+"/sims_knn_user.txt",matrix_A) matrix_B = recs.get_similarity_matrix(matrix, method ='knn_svd' ) np.savetxt(dir+"/sims_knn_svd.txt",matrix_B) matrix_C = recs.get_similarity_matrix(matrix, method ='knn_nmf' ) np.savetxt(dir+"/sims_knn_nmf.txt",matrix_C) #matrix_D = recs.get_similarity_matrix(matrix, method ='knn_item' ) #np.savetxt(dir+"/sims_knn_item.txt",matrix_D) print 'aaaaa'
__author__ = 'ponomarevandrew' import recs import dataModel import numpy as np dirs = ["A","BC","C"] names = ["knn_user", "knn_svd" , "knn_nmf", "knn_item"] for dir in dirs: for name in names: prefs_trainig,data,matrix_training = dataModel.loadMovielens('/u1.base',matrix=dir) prefs_test, data_test, matrix_test = dataModel.loadMovielens('/u1.test',matrix=dir) sim_matrix = np.loadtxt(dir+ "/sims_"+ name + ".txt") mae = recs.mae(prefs_test,prefs_trainig,sim_matrix) f = open(dir +'/mae_' + name, 'w') f.write(str(mae)) print "Aaaa"