def run_test(path_model, path_csv, path_output): model_name = 'SENET154' batch_size = 16 img_size = 256 crop_size = 224 target_mean = np.array([0.485, 0.456, 0.406]) target_std = np.array([0.229, 0.224, 0.225]) data_transform = DataTransform(no_bg=True, pad=True) data_transform_valid = data_transform.get_test(img_size=img_size, crop_size=crop_size, target_mean=target_mean, target_std=target_std, positions=[0, 2, 9]) device = torch.device("cuda:0") output_lst = predict.predict(path_csv=path_csv, path_model=path_model, model_name=model_name, batch_size=batch_size, device=device, transform=data_transform_valid) pandas.DataFrame(output_lst).to_csv(path_output, header=False, index=False)
def run_test(path_model, path_csv, path_output): model_name = 'DENSENET161-LARGE3' batch_size = 16 img_size = 366 crop_size = 320 target_mean = 0.456 target_std = 0.225 data_transform = DataTransform(no_bg=True, pad=True) data_transform_valid = data_transform.get_test(img_size=img_size, crop_size=crop_size, target_mean=target_mean, target_std=target_std, positions=[6, 3, 4]) device = torch.device("cuda:0") output_lst = predict.predict(path_csv=path_csv, path_model=path_model, model_name=model_name, batch_size=batch_size, device=device, transform=data_transform_valid) pandas.DataFrame(output_lst).to_csv(path_output, header=False, index=False)
def run_test(path_model, path_csv, path_output): model_name = 'VGG16-BN' batch_size = 16 img_size = 256 crop_size = 224 target_mean = 0.0 target_std = 1.0 data_transform = DataTransform(no_bg=True, pad=True) data_transform_valid = data_transform.get_test(img_size=img_size, crop_size=crop_size, target_mean=target_mean, target_std=target_std, positions=[5, 6, 4]) device = torch.device("cuda:0") output_lst = predict.predict(path_csv=path_csv, path_model=path_model, model_name=model_name, batch_size=batch_size, device=device, transform=data_transform_valid) pandas.DataFrame(output_lst).to_csv(path_output, header=False, index=False)
def run_test(path_model, path_csv, path_output): model_name = 'DUALPATHNET107_5k' batch_size = 16 img_size = 256 crop_size = 224 target_mean = np.array([124 / 255, 117 / 255, 104 / 255]) target_std = 1 / (.0167 * 255) data_transform = DataTransform(no_bg=True, pad=True) data_transform_valid = data_transform.get_test(img_size=img_size, crop_size=crop_size, target_mean=target_mean, target_std=target_std, positions=[0, 1, 8]) device = torch.device("cuda:0") output_lst = predict.predict( path_csv=path_csv, path_model=path_model, model_name=model_name, batch_size=batch_size, device=device, transform=data_transform_valid ) pandas.DataFrame(output_lst).to_csv(path_output, header=False, index=False)
def run_test(path_model, path_csv, path_output): model_name = 'INCEPTIONV4-LARGE' batch_size = 16 img_size = 378 crop_size = 331 target_mean = 0.5 target_std = 0.5 data_transform = DataTransform(no_bg=True, pad=True) data_transform_valid = data_transform.get_test(img_size=img_size, crop_size=crop_size, target_mean=target_mean, target_std=target_std, positions=[1, 2, 9]) device = torch.device("cuda:0") output_lst = predict.predict( path_csv=path_csv, path_model=path_model, model_name=model_name, batch_size=batch_size, device=device, transform=data_transform_valid ) pandas.DataFrame(output_lst).to_csv(path_output, header=False, index=False)