class Main(): def __init__(self): self.project = None self.extractor = None self.save_data_names() self.jira_url = None self.github_user_name = None def list_projects(self): print("\n".join( list( map(lambda e: "{0}: {1}".format(e.name, e.value.description()), ProjectName)))) def extract(self): self.extractor.extract(True) def set_project(self, github, jira): self.project = Project(github.lower(), jira.upper()) self.set_extractor() def set_project_enum(self, name): self.project = ProjectName[name].value self.set_extractor() def set_extractor(self): self.extractor = DataExtractor(self.project, self.jira_url, self.github_user_name) def extract_metrics(self): classes_data = Config.get_work_dir_path( os.path.join(Config().config['CACHING']['RepositoryData'], Config().config['VERSION_METRICS']['ClassesData'], self.project.github())) Path(classes_data).mkdir(parents=True, exist_ok=True) method_data = Config.get_work_dir_path( os.path.join(Config().config['CACHING']['RepositoryData'], Config().config['VERSION_METRICS']['MethodData'], self.project.github())) Path(method_data).mkdir(parents=True, exist_ok=True) classes_datasets = [] methods_datasets = [] for version in self.extractor.get_selected_versions()[:-1]: self.extractor.checkout_version(version) classes_df, methods_df = self.extract_features_to_version( classes_data, method_data, version) classes_datasets.append(classes_df) methods_datasets.append(methods_df) classes_instance = self.extract_classes_datasets(classes_datasets) classes_instance.predict() methods_instance = self.extract_methods_datasets(methods_datasets) methods_instance.predict() def aggrate_methods_df(self, df): ids = df['Method_ids'].iteritems() files_id, classes_id = tee(ids, 2) files = pd.Series(list(map(lambda x: x[1].split('@')[0], files_id))).values classes = pd.Series( list( map(lambda x: x[1].split('@')[1].split('.')[:-1][-1], classes_id))).values df.insert(0, 'File', files) df.insert(0, 'Class', classes) groupby = ['File', 'Class'] columns_filter = [ 'File', 'Class', 'BuggedMethods', 'Method', 'Method_ids' ] columns = list( filter(lambda x: x not in columns_filter, df.columns.values.tolist())) data = list() for key, group in df.groupby(groupby): key_data = {} key_data.update(dict(zip(groupby, key))) for feature in columns: pt = pd.DataFrame(group[feature].describe()).T cols = [ "{0}_{1}".format(feature, c) for c in pt.columns.values.tolist() ] pt.columns = cols key_data.update(list(pt.iterrows())[0][1].to_dict()) data.append(key_data) return pd.DataFrame(data) def fillna(self, df): for col in df: dt = df[col].dtype if dt == int or dt == float: df[col].fillna(0, inplace=True) else: df[col].fillna(False, inplace=True) return df def extract_features_to_version(self, classes_data, method_data, version): extractors = Extractor.get_all_extractors(self.project, version) for extractor in extractors: extractor.extract() db = DataBuilder(self.project, version) list(map(lambda d: db.append(d), DataNameEnum)) classes_df, methods_df = db.build() intermediate_dir = Config.get_work_dir_path( os.path.join(Config().config['CACHING']['RepositoryData'], Config().config['VERSION_METRICS']['Intermediate'], self.project.github())) classes_intermediate_dir = os.path.join(intermediate_dir, "classes") methods_intermediate_dir = os.path.join(intermediate_dir, "methods") Path(classes_intermediate_dir).mkdir(parents=True, exist_ok=True) Path(methods_intermediate_dir).mkdir(parents=True, exist_ok=True) classes_df.to_csv(os.path.join(classes_intermediate_dir, version + ".csv"), index=False, sep=';') methods_df.to_csv(os.path.join(methods_intermediate_dir, version + ".csv"), index=False, sep=';') methods_df = self.fillna(methods_df) aggregated_methods_df = self.aggrate_methods_df(methods_df) classes_df.dropna(inplace=True) classes_df.to_csv(os.path.join(intermediate_dir, "classes_df.csv"), index=False, sep=';') aggregated_methods_df.to_csv(os.path.join(intermediate_dir, "aggregated_methods_df.csv"), index=False, sep=';') if 'Class' in classes_df.columns and 'Class' in aggregated_methods_df.columns: classes_df = classes_df.merge(aggregated_methods_df, on=['File', 'Class'], how='outer') else: classes_df = classes_df.merge(aggregated_methods_df, on=['File'], how='outer') classes_df.to_csv(os.path.join(intermediate_dir, "classes_df_afterMerge.csv"), index=False, sep=';') classes_df = self.fillna(classes_df) classes_df.to_csv(os.path.join(classes_data, version + ".csv"), index=False, sep=';') methods_df = methods_df.drop('File', axis=1, errors='ignore') methods_df = methods_df.drop('Class', axis=1, errors='ignore') methods_df = methods_df.drop('Method', axis=1, errors='ignore') methods_df.to_csv(os.path.join(method_data, version + ".csv"), index=False, sep=';') return classes_df, methods_df def extract_classes_datasets(self, classes_datasets): dataset_dir = Config.get_work_dir_path( os.path.join(Config().config['CACHING']['RepositoryData'], Config().config['VERSION_METRICS']['Dataset'], self.project.github())) classes_dataset_dir = os.path.join(dataset_dir, "classes") Path(classes_dataset_dir).mkdir(parents=True, exist_ok=True) classes_training = pd.concat(classes_datasets[:-1], ignore_index=True).drop( ["File", "Class", "Method_ids"], axis=1, errors='ignore') classes_testing = classes_datasets[-1].drop("Method_ids", axis=1, errors='ignore') file_names = classes_testing.pop("File").values.tolist() classes_names = classes_testing.pop("Class").values.tolist() classes_testing_names = list( map("@".join, zip(file_names, classes_names))) return ClassificationInstance(classes_training, classes_testing, classes_testing_names, classes_dataset_dir) def extract_methods_datasets(self, methods_datasets): dataset_dir = Config.get_work_dir_path( os.path.join(Config().config['CACHING']['RepositoryData'], Config().config['VERSION_METRICS']['Dataset'], self.project.github())) methods_dataset_dir = os.path.join(dataset_dir, "methods") Path(methods_dataset_dir).mkdir(parents=True, exist_ok=True) methods_training = pd.concat(methods_datasets[:-1], ignore_index=True).drop("Method_ids", axis=1, errors='ignore') methods_testing = methods_datasets[-1] methods_testing_names = methods_testing.pop( "Method_ids").values.tolist() return ClassificationInstance(methods_training, methods_testing, methods_testing_names, methods_dataset_dir, label="BuggedMethods") def choose_versions(self, version_num=5, algorithm="bin", version_type=VersionType.Untyped, strict=True): self.extractor.choose_versions(version_num=version_num, algorithm=algorithm, strict=strict, version_type=version_type) def set_version_selection(self, version_num=5, algorithm="bin", version_type=VersionType.Untyped, strict=True, selected_config=0): self.extractor.choose_versions(version_num=version_num, algorithm=algorithm, strict=strict, version_type=version_type, selected_config=selected_config) self.extractor.selected_config = selected_config assert self.extractor.get_selected_versions() def save_data_names(self): j = list() out_path = Config.get_work_dir_path( os.path.join(Config().config['CACHING']['RepositoryData'], "dataname.json")) for d in DataNameEnum: j.append(d.value.as_description_dict()) with open(out_path, "w") as f: json.dump(j, f) def main(self): parser = argparse.ArgumentParser(description='Execute project data') parser.add_argument('-p', '--projects', dest='projects', action='store_const', const=True, default=False, help='list all aleready defined projects') parser.add_argument('-c', '--choose', dest='choose', action='store', help='choose a project to extract') parser.add_argument( '-g', '--github_repo_name', dest='github', action='store', help= 'the github repository name to the project to extract (lowercase)') parser.add_argument( '-j', '--jira_name', dest='jira', action='store', help='the jira name to the project to extract (uppercase)') parser.add_argument( '-עu', '--github_user_name', dest='github_user_name', action='store', help='the github user name to the project to extract (lowercase)', default="apache") parser.add_argument('-jl', '--jira_url', dest='jira_url', action='store', help='the link to jira', default="http://issues.apache.org/jira") parser.add_argument( '-l', '--list_select_verions', dest='list_selected', action='store', help='the algorithm to select the versions : [bin]', default='bin') parser.add_argument('-s', '--select_verions', dest='select', action='store', help='the configuration to choose', default=-1, type=int) parser.add_argument('-n', '--num_verions', dest='num_versions', action='store', help='the number of versions to select', default=5, type=int) parser.add_argument('-t', '--versions_type', dest='versions_type', action='store', help='the versions type to select', default="Untyped") parser.add_argument('-f', '--free_choose', dest='free_choose', action='store_true', help='the versions type to select') args = parser.parse_args() self.github_user_name = args.github_user_name self.jira_url = args.jira_url if args.projects: self.list_projects() if args.choose: self.set_project_enum(args.choose) if args.github and args.jira: self.set_project(args.github, args.jira) if args.list_selected: self.choose_versions(version_num=args.num_versions, algorithm=args.list_selected, version_type=VersionType[args.versions_type], strict=args.free_choose) if args.select != -1: self.set_version_selection( version_num=args.num_versions, algorithm='bin', version_type=VersionType[args.versions_type], strict=args.free_choose, selected_config=args.select) self.extract() self.extract_metrics()
class Main(): def __init__(self): self.project = None self.extractor = None self.save_data_names() self.jira_url = None self.github_user_name = None def list_projects(self): print("\n".join(list(map(lambda e: "{0}: {1}".format(e.name, e.value.description()), ProjectName)))) def extract(self): self.extractor.extract(True) def set_project(self, github, jira): self.project = Project(github.lower(), jira.upper()) self.set_extractor() def set_project_enum(self, name): self.project = ProjectName[name].value self.set_extractor() def set_extractor(self): self.extractor = DataExtractor(self.project, self.jira_url, self.github_user_name) def extract_metrics(self, rest_versions, rest_only, data_types): classes_datasets = [] aggregated_classes_datasets = [] methods_datasets = [] if not rest_only: for version in self.extractor.get_selected_versions()[:-1]: classes_df, methods_df, aggregated_classes_df = self.extract_features_to_version(version, True, data_types) classes_datasets.append(classes_df) methods_datasets.append(methods_df) aggregated_classes_datasets.append(aggregated_classes_df) for version in rest_versions: try: self.extract_features_to_version(version, False, data_types) except: pass if rest_only: return self.extract_classes_datasets(aggregated_classes_datasets[:-1], aggregated_classes_datasets[-1]).predict() # self.extract_classes_datasets(classes_datasets[:-1], classes_datasets[-1], "classes_no_aggregate").predict() self.extract_methods_datasets(methods_datasets[:-1], methods_datasets[-1]).predict() def create_all_but_one_dataset(self, data_types): alls = {} ones = {} detailed = {} for d in DataNameEnum: if d.value.data_type.value in data_types: detailed.setdefault(d.value.data_type.value, set()).add(d.value.name) for d in detailed: ones[d] = detailed[d] all_but_d = list(detailed.keys()) all_but_d.remove(d) alls[d] = reduce(set.__or__, list(map(detailed.get, all_but_d)), set()) for sub_dir, label in [("methods", "BuggedMethods"), ("classes", "Bugged")]: scores = [] training_df = pd.read_csv(os.path.join(self.get_dataset_path(sub_dir), "training.csv"), sep=';') testing_df = pd.read_csv(os.path.join(self.get_dataset_path(sub_dir), "testing.csv"), sep=';') dataset_cols = set(training_df.columns.to_list()).intersection(set(testing_df.columns.to_list())) names = pd.read_csv(os.path.join(self.get_dataset_path(sub_dir), "prediction.csv"), sep=';')['name'].to_list() for dir_name, columns in (('one', ones), ('all', alls)): for d in columns: cols = set(filter(lambda dc: any(map(lambda c: c in dc, columns[d])), dataset_cols)) if len(cols) == 0: continue cols.add(label) cols = list(cols) train = training_df[cols] test = testing_df[cols] ci = ClassificationInstance(train, test, names, self.get_dataset_path(os.path.join(dir_name, sub_dir, d)), label=label) try: ci.predict() ci_scores = dict(ci.scores) ci_scores.update({"type": dir_name, "data_type": d}) scores.append(ci_scores) except Exception as e: print(e) pd.DataFrame(scores).to_csv(self.get_dataset_path(sub_dir + "_metrics.csv", False), index=False, sep=';') def get_data_dirs(self): classes_data = Config.get_work_dir_path(os.path.join(Config().config['CACHING']['RepositoryData'], Config().config['VERSION_METRICS']['ClassesData'], self.project.github())) method_data = Config.get_work_dir_path( os.path.join(Config().config['CACHING']['RepositoryData'], Config().config['VERSION_METRICS']['MethodData'], self.project.github())) intermediate_dir = Config.get_work_dir_path( os.path.join(Config().config['CACHING']['RepositoryData'], Config().config['VERSION_METRICS']['Intermediate'], self.project.github())) classes_intermediate_dir = os.path.join(intermediate_dir, "classes") methods_intermediate_dir = os.path.join(intermediate_dir, "methods") Path(classes_intermediate_dir).mkdir(parents=True, exist_ok=True) Path(methods_intermediate_dir).mkdir(parents=True, exist_ok=True) Path(classes_data).mkdir(parents=True, exist_ok=True) Path(method_data).mkdir(parents=True, exist_ok=True) return classes_data, method_data, classes_intermediate_dir, methods_intermediate_dir, intermediate_dir def aggrate_methods_df(self, df): def clean(s): if "@" in s: return s[1].split('@')[1].split('.')[:-1][-1] return s[1].split('.')[:-1][-1] ids = df['Method_ids'].iteritems() files_id, classes_id = tee(ids, 2) files = pd.Series(list(map(lambda x: x[1].split('@')[0], files_id))).values classes = pd.Series(list(map(clean, classes_id))).values df.insert(0, 'File', files) df.insert(0, 'Class', classes) groupby = ['File', 'Class'] columns_filter = ['File', 'Class', 'BuggedMethods', 'Method', 'Method_ids'] columns = list( filter(lambda x: x not in columns_filter, df.columns.values.tolist())) data = list() for key, group in df.groupby(groupby): key_data = {} key_data.update(dict(zip(groupby, key))) for feature in columns: pt = pd.DataFrame(group[feature].describe(include = 'all')).T cols = ["{0}_{1}".format(feature, c) for c in pt.columns.values.tolist()] pt.columns = cols key_data.update(list(pt.iterrows())[0][1].to_dict()) data.append(key_data) return pd.DataFrame(data) def fillna(self, df, default=False): if 'Bugged' in df: df = df[df['Bugged'].notna()] if 'BuggedMethods' in df : df = df[df['BuggedMethods'].notna()] for col in df: dt = df[col].dtype if dt == int or dt == float: df[col].fillna(0, inplace=True) else: df[col].fillna(default, inplace=True) return df def extract_features_to_version(self, version, extract_bugs, data_types): self.extractor.checkout_version(version) db, extractors_to_run = self.get_extractors(data_types, extract_bugs, version) for extractor in extractors_to_run: start = time.time() extractor.extract() print(time.time() - start, extractor.__class__.__name__) classes_df, methods_df = db.build() aggregated_methods_df = self.aggrate_methods_df(methods_df) methods_df = self.fillna(methods_df) aggregated_classes_df = self.merge_aggregated_methods_to_class(aggregated_methods_df, classes_df) classes_df = self.fillna(classes_df) methods_df = methods_df.drop('File', axis=1, errors='ignore') methods_df = methods_df.drop('Class', axis=1, errors='ignore') methods_df = methods_df.drop('Method', axis=1, errors='ignore') self.save_dfs(classes_df, methods_df, aggregated_classes_df, aggregated_methods_df, version) return classes_df, methods_df, aggregated_classes_df def merge_aggregated_methods_to_class(self, aggregated_methods_df, classes_df): aggregated_classes_df = classes_df.copy(deep=True) if 'Class' in aggregated_classes_df.columns and 'Class' in aggregated_methods_df.columns: aggregated_classes_df = aggregated_classes_df.merge(aggregated_methods_df, on=['File', 'Class'], how='outer') else: aggregated_classes_df = aggregated_classes_df.merge(aggregated_methods_df, on=['File'], how='outer') return self.fillna(aggregated_classes_df) def save_dfs(self, classes_df, methods_df, aggregated_classes_df, aggregated_methods_df, version): classes_data, method_data, classes_intermediate_dir, methods_intermediate_dir, intermediate_dir = self.get_data_dirs() classes_df.to_csv(os.path.join(classes_intermediate_dir, version + ".csv"), index=False, sep=';') aggregated_classes_df.to_csv(os.path.join(classes_intermediate_dir, version + "_aggregated_classes.csv"), index=False, sep=';') methods_df.to_csv(os.path.join(methods_intermediate_dir, version + ".csv"), index=False, sep=';') aggregated_methods_df.to_csv(os.path.join(intermediate_dir, version + "_aggregated_methods_df.csv"), index=False, sep=';') classes_df.to_csv(os.path.join(classes_data, version + ".csv"), index=False, sep=';') aggregated_classes_df.to_csv(os.path.join(classes_data, version + "_aggregated_classes_.csv"), index=False, sep=';') methods_df.to_csv(os.path.join(method_data, version + ".csv"), index=False, sep=';') def get_extractors(self, data_types, extract_bugs, version): db = DataBuilder(self.project, version) if extract_bugs: data_types.add("bugged") data_types.add("bugged_methods") extractors_to_run = set() for extractor in Extractor.get_all_extractors(self.project, version): if not extract_bugs and "bugged" in extractor.__class__.__name__.lower(): continue extractor_data_types = [] for dt in extractor.data_types: if dt.value in data_types: extractor_data_types.append(dt) extractors_to_run.add(extractor) db.add_data_types(extractor_data_types) return db, extractors_to_run def extract_classes_datasets(self, training_datasets, testing_dataset, sub_dir="classes"): training = pd.concat(training_datasets, ignore_index=True).drop(["File", "Class", "Method_ids"], axis=1, errors='ignore') training = self.fillna(training) testing = testing_dataset.drop(["Method_ids", "Class"], axis=1, errors='ignore') testing = self.fillna(testing, default='') file_names = testing.pop("File").values.tolist() # classes_names = testing.pop("Class").values.tolist() # classes_testing_names = list(map("@".join, zip(file_names, ['' if x in (False, True) else x for x in classes_names]))) return ClassificationInstance(training, testing, file_names, self.get_dataset_path(sub_dir)) def get_dataset_path(self, name, is_dir=True): dataset_dir = Config.get_work_dir_path( os.path.join(Config().config['CACHING']['RepositoryData'], Config().config['VERSION_METRICS']['Dataset'], self.project.github())) path = os.path.join(dataset_dir, name) if is_dir: Path(path).mkdir(parents=True, exist_ok=True) return path def extract_methods_datasets(self, training_datasets, testing_dataset): training = pd.concat(training_datasets, ignore_index=True).drop("Method_ids", axis=1, errors='ignore') training = self.fillna(training) testing = testing_dataset testing = self.fillna(testing) methods_testing_names = testing.pop("Method_ids").values.tolist() return ClassificationInstance(training, testing, methods_testing_names, self.get_dataset_path("methods"), label="BuggedMethods") def choose_versions(self, version_num=5, algorithm="bin", version_type=VersionType.Untyped, strict=True): self.extractor.init_jira_commits() self.extractor.choose_versions(version_num=version_num, algorithm=algorithm, strict=strict, version_type=version_type) def set_version_selection(self, version_num=5, algorithm="bin", version_type=VersionType.Untyped, strict=True, selected_config=0): self.extractor.set_selected_config(selected_config) self.extractor.choose_versions(version_num=version_num, algorithm=algorithm, strict=strict, version_type=version_type) assert self.extractor.get_selected_versions() def save_data_names(self): j = list() out_path = Config.get_work_dir_path( os.path.join(Config().config['CACHING']['RepositoryData'], "dataname.json")) for d in DataNameEnum: j.append(d.value.as_description_dict()) with open(out_path, "w") as f: json.dump(j, f) def main(self): parser = argparse.ArgumentParser(description='Execute project data') parser.add_argument('-p', '--projects', dest='projects', action='store_const', const=True, default=False, help='list all aleready defined projects') parser.add_argument('-c', '--choose', dest='choose', action='store', help='choose a project to extract') parser.add_argument('-g', '--github_repo_name', dest='github', action='store', help='the github repository name to the project to extract (lowercase)') parser.add_argument('-j', '--jira_name', dest='jira', action='store', help='the jira name to the project to extract (uppercase)') parser.add_argument('-u', '--github_user_name', dest='github_user_name', action='store', help='the github user name to the project to extract (lowercase)', default="apache") parser.add_argument('-jl', '--jira_url', dest='jira_url', action='store', help='the link to jira', default="http://issues.apache.org/jira") parser.add_argument('-l', '--list_select_verions', dest='list_selected', action='store', help='the algorithm to select the versions : [bin]', default='bin') parser.add_argument('-d', '--data_types_to_extract', dest='data_types', action='store', help='Json file of the data types to extract as features. Choose a sublist of ' '[checkstyle, designite_design, designite_implementation, ' 'designite_type_organic, designite_method_organic, designite_type_metrics,' 'designite_method_metrics, source_monitor_files, source_monitor, ck, mood, halstead,' 'jasome_files, jasome_methods, process_files, issues_files]. You can use the files under externals\configurations', default=r"externals\configurations\default.json") parser.add_argument('-s', '--select_verions', dest='select', action='store', help='the configuration to choose', default=0, type=int) parser.add_argument('-n', '--num_verions', dest='num_versions', action='store', help='the number of versions to select', default=5, type=int) parser.add_argument('-t', '--versions_type', dest='versions_type', action='store', help='the versions type to select', default="Untyped") parser.add_argument('-f', '--free_choose', dest='free_choose', action='store_true', help='the versions type to select') parser.add_argument('-r', '--only_rest', dest='only_rest', action='store_true', help='extract only rest versions') parser.add_argument('rest', nargs=argparse.REMAINDER) args = parser.parse_args() self.github_user_name = args.github_user_name self.jira_url = args.jira_url if args.projects: self.list_projects() if args.choose: self.set_project_enum(args.choose) if args.github and args.jira: self.set_project(args.github, args.jira) if args.list_selected: self.choose_versions(version_num=args.num_versions, algorithm=args.list_selected, version_type=VersionType[args.versions_type], strict=args.free_choose) # if args.select != -1: self.set_version_selection(version_num=args.num_versions, algorithm='bin', version_type=VersionType[args.versions_type], strict=args.free_choose, selected_config=args.select) self.extract() data_types = None if os.path.exists(args.data_types): with open(args.data_types) as f: data_types = set(json.loads(f.read())) self.extract_metrics(args.rest, args.only_rest, data_types) self.create_all_but_one_dataset(data_types)