コード例 #1
0
ファイル: tradeagent.py プロジェクト: keel1982/pyktrader
 def prepare_data_env(self, inst, mid_day = True):
     if  self.instruments[inst].ptype == instrument.ProductType.Option:
         return
     if self.daily_data_days > 0 or mid_day:
         self.logger.debug('Updating historical daily data for %s' % self.scur_day.strftime('%Y-%m-%d'))
         daily_start = workdays.workday(self.scur_day, -self.daily_data_days, CHN_Holidays)
         daily_end = self.scur_day
         self.day_data[inst] = mysqlaccess.load_daily_data_to_df('fut_daily', inst, daily_start, daily_end)
         df = self.day_data[inst]
         if len(df) > 0:
             self.instruments[inst].price = df['close'][-1]
             self.instruments[inst].last_update = 0
             self.instruments[inst].prev_close = df['close'][-1]
             for fobj in self.day_data_func[inst]:
                 ts = fobj.sfunc(df)
                 df[ts.name]= pd.Series(ts, index=df.index)
     if self.min_data_days > 0 or mid_day:
         self.logger.debug('Updating historical min data for %s' % self.scur_day.strftime('%Y-%m-%d'))
         d_start = workdays.workday(self.scur_day, -self.min_data_days, CHN_Holidays)
         d_end = self.scur_day
         min_start = int(self.instruments[inst].start_tick_id/1000)
         min_end = int(self.instruments[inst].last_tick_id/1000)+1
         mindata = mysqlaccess.load_min_data_to_df('fut_min', inst, d_start, d_end, minid_start=min_start, minid_end=min_end, database = 'blueshale')
         mindata = backtest.cleanup_mindata(mindata, self.instruments[inst].product)
         self.min_data[inst][1] = mindata
         if len(mindata)>0:
             min_date = mindata.index[-1].date()
             if (len(self.day_data[inst].index)==0) or (min_date > self.day_data[inst].index[-1]):
                 ddf = data_handler.conv_ohlc_freq(mindata, 'd')
                 self.cur_day[inst]['open'] = float(ddf.open[-1])
                 self.cur_day[inst]['close'] = float(ddf.close[-1])
                 self.cur_day[inst]['high'] = float(ddf.high[-1])
                 self.cur_day[inst]['low'] = float(ddf.low[-1])
                 self.cur_day[inst]['volume'] = int(ddf.volume[-1])
                 self.cur_day[inst]['openInterest'] = int(ddf.openInterest[-1])
                 self.cur_min[inst]['datetime'] = pd.datetime(*mindata.index[-1].timetuple()[0:-3])
                 self.cur_min[inst]['open'] = float(mindata.ix[-1,'open'])
                 self.cur_min[inst]['close'] = float(mindata.ix[-1,'close'])
                 self.cur_min[inst]['high'] = float(mindata.ix[-1,'high'])
                 self.cur_min[inst]['low'] = float(mindata.ix[-1,'low'])
                 self.cur_min[inst]['volume'] = self.cur_day[inst]['volume']
                 self.cur_min[inst]['openInterest'] = self.cur_day[inst]['openInterest']
                 self.cur_min[inst]['min_id'] = int(mindata.ix[-1,'min_id'])
                 self.instruments[inst].price = float(mindata.ix[-1,'close'])
                 self.instruments[inst].last_update = 0
                 self.logger.debug('inst=%s tick data loaded for date=%s' % (inst, min_date))
             for m in self.min_data_func[inst]:
                 if m != 1:
                     self.min_data[inst][m] = data_handler.conv_ohlc_freq(self.min_data[inst][1], str(m)+'min')
                 df = self.min_data[inst][m]
                 for fobj in self.min_data_func[inst][m]:
                     ts = fobj.sfunc(df)
                     df[ts.name]= pd.Series(ts, index=df.index)
コード例 #2
0
def fisher_swing(asset, start_date, end_date, freqs, windows, config):
    nearby = config['nearby']
    rollrule = config['rollrule']
    file_prefix = config['file_prefix'] + '_' + asset + '_'
    df = misc.nearby(asset,
                     nearby,
                     start_date,
                     end_date,
                     rollrule,
                     'm',
                     need_shift=True)
    df = backtest.cleanup_mindata(df, asset)
    output = {}
    for ix, freq in enumerate(freqs):
        xdf = dh.conv_ohlc_freq(df, freq)
        for iy, win in enumerate(windows):
            idx = ix * 10 + iy
            config['win'] = win
            config['freq'] = freq
            (res, closed_trades, ts) = fisher_swing_sim(df, xdf, config)
            output[idx] = res
            print 'saving results for scen = %s' % str(idx)
            all_trades = {}
            for i, tradepos in enumerate(closed_trades):
                all_trades[i] = strat.tradepos2dict(tradepos)
            fname = file_prefix + str(idx) + '_trades.csv'
            trades = pd.DataFrame.from_dict(all_trades).T
            trades.to_csv(fname)
            fname = file_prefix + str(idx) + '_dailydata.csv'
            ts.to_csv(fname)
    fname = file_prefix + 'stats.csv'
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return
コード例 #3
0
ファイル: bktest_rbreaker.py プロジェクト: afanxia/pyktrader
def r_breaker( asset, start_date, end_date, scenarios, freqs, config):
    nearby  = config['nearby']
    rollrule = config['rollrule']
    start_d = misc.day_shift(start_date, '-1b')
    file_prefix = config['file_prefix'] + '_' + asset + '_'
    ddf = misc.nearby(asset, nearby, start_date, end_date, rollrule, 'd', need_shift=True)
    mdf = misc.nearby(asset, nearby, start_date, end_date, rollrule, 'm', need_shift=True)
    mdf = backtest.cleanup_mindata(mdf, asset)
    #ddf = dh.conv_ohlc_freq(mdf, 'D')
    output = {}
    for ix, freq in enumerate(freqs):
        if freq !='1min':
            df = dh.conv_ohlc_freq(mdf, freq)
        else:
            df = mdf
        for iy, k in enumerate(scenarios):
            idx = ix*10+iy
            config['k'] = k
            (res, closed_trades, ts) = r_breaker_sim( ddf, df, config)
            output[idx] = res
            print 'saving results for scen = %s' % str(idx)
            all_trades = {}
            for i, tradepos in enumerate(closed_trades):
                all_trades[i] = strat.tradepos2dict(tradepos)
            fname = file_prefix + str(idx) + '_trades.csv'
            trades = pd.DataFrame.from_dict(all_trades).T  
            trades.to_csv(fname)
            fname = file_prefix + str(idx) + '_dailydata.csv'
            ts.to_csv(fname)
    fname = file_prefix + 'stats.csv'
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return 
コード例 #4
0
ファイル: ts_tool.py プロジェクト: zixys/pyktrader2
def get_cont_data(asset,
                  start_date,
                  end_date,
                  freq='1m',
                  nearby=1,
                  rollrule='-10b'):
    if nearby == 0:
        mdf = mysqlaccess.load_min_data_to_df('fut_min',
                                              asset,
                                              start_date,
                                              end_date,
                                              minid_start=300,
                                              minid_end=2114,
                                              database='hist_data')
        mdf['contract'] = asset
    else:
        mdf = misc.nearby(asset,
                          nearby,
                          start_date,
                          end_date,
                          rollrule,
                          'm',
                          need_shift=True,
                          database='hist_data')
    mdf = backtest.cleanup_mindata(mdf, asset)
    xdf = dh.conv_ohlc_freq(mdf,
                            freq,
                            extra_cols=['contract'],
                            bar_func=dh.bar_conv_func2)
    return xdf
コード例 #5
0
def aberration( asset, start_date, end_date, freqs, windows, config):
    nearby  = config['nearby']
    rollrule = config['rollrule']
    file_prefix = config['file_prefix'] + '_' + asset + '_'
    df = misc.nearby(asset, nearby, start_date, end_date, rollrule, 'm', need_shift=True)
    df = backtest.cleanup_mindata(df, asset)    
    output = {}
    for ix, freq in enumerate(freqs):
        xdf = dh.conv_ohlc_freq(df, freq)
        for iy, win in enumerate(windows):
            idx = ix*10+iy
            config['win'] = win
            (res, closed_trades, ts) = aberration_sim( xdf, config)
            output[idx] = res
            print 'saving results for scen = %s' % str(idx)
            all_trades = {}
            for i, tradepos in enumerate(closed_trades):
                all_trades[i] = strat.tradepos2dict(tradepos)
            fname = file_prefix + str(idx) + '_trades.csv'
            trades = pd.DataFrame.from_dict(all_trades).T  
            trades.to_csv(fname)
            fname = file_prefix + str(idx) + '_dailydata.csv'
            ts.to_csv(fname)
    fname = file_prefix + 'stats.csv'
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return 
コード例 #6
0
def spd_ratiovol_by_product(products, start_d, end_d, periods=12, tenor='-1m'):
    cont_mth, exch = dbaccess.prod_main_cont_exch(products)
    contlist = contract_range(products, exch, cont_mth, start_d, end_d)
    exp_dates = [get_opt_expiry(cont, inst2contmth(cont)) for cont in contlist]
    data = {
        'is_dtime': True,
        'data_column': 'close',
        'data_freq': '30min',
        'xs': [0.5, 0.25, 0.75],
        'xs_names': ['atm', 'v25', 'v75'],
        'xs_func': 'bs_delta_to_strike',
        'rehedge_period': 1,
        'term_tenor': tenor,
        'database': 'hist_data'
    }
    option_input = {
        'otype': True,
        'ir': 0.0,
        'end_vol': 0.0,
        'ref_vol': 0.5,
        'pricer_func': 'bsopt.BSOpt',
        'delta_func': 'bsopt.BSDelta',
        'is_dtime': data['is_dtime'],
    }
    freq = data['data_freq']
    for cont, expiry in zip(contlist, exp_dates):
        expiry_d = expiry.date()
        if expiry_d > end_d:
            break
        p_str = '-' + str(int(tenor[1:-1]) * periods) + tenor[-1]
        d_start = day_shift(expiry_d, p_str)
        cnx = dbaccess.connect(**dbaccess.dbconfig)
        if freq == 'd':
            df = dbaccess.load_daily_data_to_df(cnx,
                                                'fut_daily',
                                                cont,
                                                d_start,
                                                expiry_d,
                                                index_col=None)
        else:
            mdf = dbaccess.load_min_data_to_df(cnx,
                                               'fut_min',
                                               cont,
                                               d_start,
                                               expiry_d,
                                               minid_start=300,
                                               minid_end=2115,
                                               index_col=None)
            mdf = cleanup_mindata(mdf, products, index_col=None)
            mdf['bar_id'] = dh.bar_conv_func2(mdf['min_id'])
            df = dh.conv_ohlc_freq(mdf,
                                   freq,
                                   bar_func=dh.bar_conv_func2,
                                   extra_cols=['bar_id'],
                                   index_col=None)
        cnx.close()
        option_input['expiry'] = expiry
        data['dataframe'] = df
        vol_df = realized_termstruct(option_input, data)
        print cont, expiry_d, vol_df
コード例 #7
0
def fisher_swing(asset, start_date, end_date, freqs, windows, config):
    nearby = config["nearby"]
    rollrule = config["rollrule"]
    file_prefix = config["file_prefix"] + "_" + asset + "_"
    df = misc.nearby(asset, nearby, start_date, end_date, rollrule, "m", need_shift=True)
    df = backtest.cleanup_mindata(df, asset)
    output = {}
    for ix, freq in enumerate(freqs):
        xdf = dh.conv_ohlc_freq(df, freq)
        for iy, win in enumerate(windows):
            idx = ix * 10 + iy
            config["win"] = win
            config["freq"] = freq
            (res, closed_trades, ts) = fisher_swing_sim(df, xdf, config)
            output[idx] = res
            print "saving results for scen = %s" % str(idx)
            all_trades = {}
            for i, tradepos in enumerate(closed_trades):
                all_trades[i] = strat.tradepos2dict(tradepos)
            fname = file_prefix + str(idx) + "_trades.csv"
            trades = pd.DataFrame.from_dict(all_trades).T
            trades.to_csv(fname)
            fname = file_prefix + str(idx) + "_dailydata.csv"
            ts.to_csv(fname)
    fname = file_prefix + "stats.csv"
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return
コード例 #8
0
 def process_data(self, mdf):
     if self.freq == 1:
         xdf = mdf
     else:
         freq_str = str(self.freq) + "min"
         xdf = dh.conv_ohlc_freq(mdf, freq_str, extra_cols = ['contract'])
     xdf['band_wth'] = self.band_func(xdf, n = self.boll_len) * self.band_ratio
     xdf['band_mid'] = self.ma_func(xdf, n=self.boll_len)
     xdf['band_up'] = xdf['band_mid'] + xdf['band_wth']
     xdf['band_dn'] = xdf['band_mid'] - xdf['band_wth']
     if (self.chan_len > 0):
         xdf['chan_h'] = dh.DONCH_H(xdf, n = self.chan_len, field = 'high')
         xdf['chan_l'] = dh.DONCH_L(xdf, n = self.chan_len, field = 'low')
     else:
         xdf['chan_h'] = -10000000
         xdf['chan_l'] = 10000000
     xdata = pd.concat([xdf['band_up'].shift(1), xdf['band_dn'].shift(1), \
                        xdf['band_mid'].shift(1), xdf['band_wth'].shift(1), \
                        xdf['chan_h'].shift(1), xdf['chan_l'].shift(1)], axis=1, \
                        keys=['band_up','band_dn', 'band_mid', 'band_wth', \
                              'chan_h', 'chan_l'])
     self.df = mdf.join(xdata, how = 'left').fillna(method='ffill')
     self.df['datetime'] = self.df.index
     self.df['cost'] = 0.0
     self.df['pos'] = 0.0
     self.df['closeout'] = 0.0
     self.df['traded_price'] = self.df['open']
コード例 #9
0
def fix_daily_data(contlist, sdate, edate):
    for inst in contlist:
        ddf = mysqlaccess.load_daily_data_to_df('fut_daily', inst, sdate,
                                                edate)
        mdf = mysqlaccess.load_min_data_to_df('fut_min',
                                              inst,
                                              sdate,
                                              edate,
                                              minid_start=300,
                                              minid_end=2115)
        dailydata = data_handler.conv_ohlc_freq(mdf, 'D')
        for dd in dailydata.index:
            d = dd.date()
            dslice = dailydata.ix[dd]
            if d not in ddf.index:
                ddata = {}
                ddata['date'] = d
                ddata['open'] = float(dslice.open)
                ddata['close'] = float(dslice.close)
                ddata['high'] = float(dslice.high)
                ddata['low'] = float(dslice.low)
                ddata['volume'] = int(dslice.volume)
                ddata['openInterest'] = int(dslice.openInterest)
                print inst, ddata
                mysqlaccess.insert_daily_data(inst, ddata)
コード例 #10
0
 def process_data(self, df):
     if self.freq == 1:
         xdf = df
     else:
         freq_str = str(self.freq) + "min"
         xdf = dh.conv_ohlc_freq(df, freq_str, extra_cols=['contract'])
     xdf['band_wth'] = self.band_func(
         xdf, n=self.boll_len).fillna(method='bfill')
     xdf['band_mid'] = self.ma_func(xdf, n=self.boll_len)
     xdf['band_up'] = xdf['band_mid'] + xdf['band_wth'] * self.band_ratio
     xdf['band_dn'] = xdf['band_mid'] - xdf['band_wth'] * self.band_ratio
     xdf['filter_ind'] = self.filter_func(xdf, self.filter_len)
     xdf['chan_h'] = dh.DONCH_H(xdf, self.channel)
     xdf['chan_l'] = dh.DONCH_L(xdf, self.channel)
     xdf['tr_stop_h'] = xdf['chan_h'] - (
         xdf['band_wth'] * self.SL /
         self.tick_base).astype('int') * self.tick_base
     xdf['tr_stop_l'] = xdf['chan_l'] + (
         xdf['band_wth'] * self.SL /
         self.tick_base).astype('int') * self.tick_base
     xdata = pd.concat([xdf['band_up'].shift(1), xdf['band_dn'].shift(1), \
                        xdf['tr_stop_h'].shift(1), xdf['tr_stop_l'].shift(1), xdf['filter_ind'].shift(1)], axis=1, \
                        keys=['band_up','band_dn', 'tr_stop_h', 'tr_stop_l', 'filter_ind'])
     self.df = df.join(xdata, how='left').fillna(method='ffill').dropna()
     self.df['cost'] = 0.0
     self.df['pos'] = 0.0
     self.df['closeout'] = 0.0
     self.df['traded_price'] = self.df['open']
コード例 #11
0
ファイル: ts_tool.py プロジェクト: harveywwu/pyktrader2
def get_cont_data(asset, start_date, end_date, freq = '1m', nearby = 1, rollrule = '-10b'):
    cnx = dbaccess.connect(**dbaccess.hist_dbconfig)
    if nearby == 0:
        mdf = dbaccess.load_min_data_to_df(cnx, 'fut_min', asset, start_date, end_date, minid_start = 300, minid_end = 2114, database = 'hist_data')
        mdf['contract'] = asset
    else:
        mdf = misc.nearby(asset, nearby, start_date, end_date, rollrule, 'm', need_shift=True, database = 'hist_data')
    mdf = misc.cleanup_mindata(mdf, asset)
    xdf = dh.conv_ohlc_freq(mdf, freq, extra_cols = ['contract'], bar_func = dh.bar_conv_func2)
    return xdf
コード例 #12
0
ファイル: hist_vol_tool.py プロジェクト: harveywwu/pyktrader2
def hist_cso_by_product(prodcode, start_d, end_d, periods = 24, tenor = '-1w', max_spd = 2, writeDB = False, mode = 'n'):
    cont_mth, exch = dbaccess.prod_main_cont_exch(prodcode)
    contlist, _ = contract_range(prodcode, exch, cont_mth, start_d, end_d)
    exp_dates = [get_opt_expiry(cont, inst2contmth(cont)) for cont in contlist]
    if mode == 'n':
        xs_func = 'bachelier_delta_to_strike'
        pricer_func = 'bsopt.BSFwdNormal'
        delta_func = 'bsopt.BSFwdNormalDelta'
    else:
        xs_func = 'bs_delta_to_strike'
        pricer_func = 'bsopt.BSOpt'
        delta_func = 'bsopt.BSDelta'
    data = {'is_dtime': True,
            'data_column': 'close',
            'data_freq': '30min',
            'xs': [0.5, 0.25, 0.75],
            'xs_names': ['atm', 'v25', 'v75'],
            'xs_func': xs_func,
            'rehedge_period': 1,
            'term_tenor': tenor,
            'database': 'hist_data'
            }
    option_input = {'otype': True,
                    'ir': 0.0,
                    'end_vol': 0.0,
                    'ref_vol': 0.5,
                    'pricer_func': pricer_func,
                    'delta_func': delta_func,
                    'is_dtime': data['is_dtime'],
                    }
    freq = data['data_freq']
    dbconfig = copy.deepcopy(**dbaccess.hist_dbconfig)
    dbconfig['database'] = data['database']
    cnx = dbaccess.connect(**dbconfig)
    for cont, expiry in zip(contlist, exp_dates):
        expiry_d = expiry.date()
        if expiry_d > end_d:
            break
        p_str = '-' + str(int(tenor[1:-1]) * periods) + tenor[-1]
        d_start = day_shift(expiry_d, p_str)
        if freq == 'd':
            df = dbaccess.load_daily_data_to_df(cnx, 'fut_daily', cont, d_start, expiry_d, index_col = None)
        else:
            mdf = dbaccess.load_min_data_to_df(cnx, 'fut_min', cont, d_start, expiry_d, minid_start=300,
                                                  minid_end=2115, index_col = None)
            mdf = cleanup_mindata(mdf, prodcode, index_col = None)
            mdf['bar_id'] = dh.bar_conv_func2(mdf['min_id'])
            df = dh.conv_ohlc_freq(mdf, freq, bar_func=dh.bar_conv_func2, extra_cols=['bar_id'], index_col = None)
        cnx.close()
        option_input['expiry'] = expiry
        data['dataframe'] = df
        vol_df = realized_termstruct(option_input, data)
        print cont, expiry_d, vol_df
コード例 #13
0
 def run_vec_sim(self):
     xdf = dh.conv_ohlc_freq(self.df, self.freq, extra_cols=['contract'])
     for idx, win in enumerate(self.win_list):
         xdf['MA' + str(idx + 1)] = self.ma_func(xdf, win).shift(1)
     if self.use_chan:
         xdf['chan_high'] = self.chan_high(xdf, self.channel,
                                           **self.high_args).shift(2)
         xdf['chan_low'] = self.chan_low(xdf, self.channel,
                                         **self.low_args).shift(2)
     else:
         xdf['chan_high'] = pd.Series(index=xdf.index)
         xdf['chan_low'] = pd.Series(index=xdf.index)
     xdf['prev_close'] = xdf['close'].shift(1)
     xdf['close_ind'] = np.isnan(xdf['close'].shift(-1))
     if self.close_daily:
         daily_end = (xdf['date'] != xdf['date'].shift(-1))
         xdf['close_ind'] = xdf['close_ind'] | daily_end
     long_signal = pd.Series(np.nan, index=xdf.index)
     last = len(self.win_list)
     long_flag = (xdf['MA1'] >= xdf['MA2']) & (xdf['MA1'] >=
                                               xdf['MA' + str(last)])
     if self.use_chan:
         long_flag = long_flag & (xdf['open'] >= xdf['chan_high'])
     long_signal[long_flag] = 1
     cover_flag = (xdf['MA1'] < xdf['MA' + str(last)])
     if self.use_chan:
         cover_flag = cover_flag | (xdf['open'] < xdf['chan_low'])
     long_signal[cover_flag] = 0
     long_signal[xdf['close_ind']] = 0
     long_signal = long_signal.fillna(method='ffill').fillna(0)
     short_signal = pd.Series(np.nan, index=xdf.index)
     short_flag = (xdf['MA1'] <= xdf['MA2']) & (xdf['MA1'] <=
                                                xdf['MA' + str(last)])
     if self.use_chan:
         short_flag = short_flag & (xdf['open'] <= xdf['chan_low'])
     cover_flag = (xdf['MA1'] > xdf['MA' + str(last)])
     if self.use_chan:
         cover_flag = cover_flag | (xdf['open'] > xdf['chan_low'])
     short_signal[cover_flag] = 0
     short_signal[xdf['close_ind']] = 0
     short_signal = short_signal.fillna(method='ffill').fillna(0)
     if len(xdf[(long_signal > 0) & (short_signal < 0)]) > 0:
         print xdf[(long_signal > 0) & (short_signal < 0)]
         print "something wrong with the position as long signal and short signal happen the same time"
     xdf['pos'] = long_signal + short_signal
     xdf['cost'] = abs(xdf['pos'] - xdf['pos'].shift(1)) * (
         self.offset + xdf['open'] * self.tcost)
     xdf['cost'] = xdf['cost'].fillna(0.0)
     xdf['traded_price'] = xdf.open + (xdf['pos'] -
                                       xdf['pos'].shift(1)) * self.offset
     closed_trades = simdf_to_trades1(xdf, slippage=self.offset)
     return (xdf, closed_trades)
コード例 #14
0
 def process_data(self, mdf):
     if self.freq == 1:
         xdf = mdf
     else:
         freq_str = str(self.freq) + "min"
         xdf = dh.conv_ohlc_freq(mdf, freq_str, extra_cols=['contract'])
     xdf['ATR'] = dh.ATR(xdf, n=self.atr_len)
     xdf['ATRMA'] = dh.MA(xdf, n=self.atrma_len, field='ATR')
     xdf['RSI'] = dh.RSI(xdf, n=self.rsi_len)
     self.df = xdf
     self.df['datetime'] = self.df.index
     self.df['cost'] = 0.0
     self.df['pos'] = 0.0
     self.df['traded_price'] = self.df['open']
コード例 #15
0
 def process_data(self, mdf):
     if self.freq == 1:
         xdf = mdf
     else:
         freq_str = str(self.freq) + "min"
         xdf = dh.conv_ohlc_freq(mdf, freq_str, extra_cols = ['contract'])
     xdf['ATR'] = dh.ATR(xdf, n = self.atr_len)
     xdf['ATRMA'] = dh.MA(xdf, n=self.atrma_len, field = 'ATR')
     xdf['RSI'] = dh.RSI(xdf, n = self.rsi_len)
     self.df = xdf
     self.df['datetime'] = self.df.index
     self.df['closeout'] = 0.0
     self.df['cost'] = 0.0
     self.df['pos'] = 0.0
     self.df['traded_price'] = self.df['open']
コード例 #16
0
def chanbreak_sim(mdf, config):
    freq = config['freq']
    str_freq = str(freq) + 'Min'
    xdf = dh.conv_ohlc_freq(mdf, str_freq)
    tcost = config['trans_cost']
    offset = config['offset']
    win = config['win']
    chan_func = config['channel_func']
    upper_chan_func = eval(chan_func[0])
    lower_chan_func = eval(chan_func[1])
    entry_chan = win[0]
    exit_chan = win[1]
    exit_min = config.get('exit_min', 2057)
    close_daily = config.get('close_daily', False)
    stoploss = config.get('stoploss', 2.0)
    xdf['H1'] = upper_chan_func(xdf, entry_chan)
    xdf['L1'] = lower_chan_func(xdf, entry_chan)
    xdf['H2'] = upper_chan_func(xdf, exit_chan)
    xdf['L2'] = lower_chan_func(xdf, exit_chan)
    xdf['ATR'] = dh.ATR(xdf, entry_chan)
    xdata = pd.concat([xdf['H1'], xdf['L1'], xdf['H2'], xdf['L2'], xdf['ATR']], \
                      axis=1, keys=['H1', 'L1', 'H2', 'L2', 'ATR']).shift(1)
    mdf = mdf.join(xdata, how='left').fillna(method='ffill')
    mdf['close_ind'] = np.isnan(mdf['close'].shift(-3))
    if close_daily:
        mdf['close_ind'] = (mdf['min_id'] >= exit_min) | mdf['close_ind']
    long_signal = pd.Series(np.nan, index=mdf.index)
    long_signal[(mdf['open'] >= mdf['H1'])] = 1
    long_signal[(mdf['open'] <= mdf['L2'])] = 0
    if stoploss > 0:
        long_signal[(mdf['open'] <= mdf['H1'] - mdf['ATR'] * stoploss)] = 0
    long_signal[mdf['close_ind']] = 0
    long_signal = long_signal.fillna(method='ffill').fillna(0)
    short_signal = pd.Series(np.nan, index=mdf.index)
    short_signal[(mdf['open'] <= mdf['L1'])] = -1
    short_signal[(mdf['open'] >= mdf['H2'])] = 0
    if stoploss > 0:
        short_signal[(mdf['open'] >= mdf['L1'] + mdf['ATR'] * stoploss)] = 0
    short_signal[mdf['close_ind']] = 0
    short_signal = short_signal.fillna(method='ffill').fillna(0)
    mdf['pos'] = long_signal + short_signal
    mdf['cost'] = abs(mdf['pos'] - mdf['pos'].shift(1)) * (offset +
                                                           mdf['open'] * tcost)
    mdf['cost'] = mdf['cost'].fillna(0.0)
    mdf['traded_price'] = mdf.open + (mdf['pos'] -
                                      mdf['pos'].shift(1)) * offset
    closed_trades = backtest.simdf_to_trades1(mdf, slippage=offset)
    return (mdf, closed_trades)
コード例 #17
0
 def process_data(self, mdf):
     if self.freq == 1:
         xdf = mdf
     else:
         freq_str = str(self.freq) + "min"
         xdf = dh.conv_ohlc_freq(mdf, freq_str, extra_cols=['contract'])
     ma_ribbon = dh.MA_RIBBON(xdf, self.ma_list)
     self.df = xdf
     for malen in self.ma_list:
         self.df['EMA' + str(malen)] = ma_ribbon['EMA_CLOSE_' + str(malen)]
     self.df['RIBBON_CORR'] = ma_ribbon['MARIBBON_CORR']
     self.df['RIBBON_PVAL'] = ma_ribbon['MARIBBON_PVAL']
     self.df['closeout'] = 0.0
     self.df['cost'] = 0.0
     self.df['pos'] = 0.0
     self.df['traded_price'] = self.df['open']
コード例 #18
0
ファイル: fix_db_data.py プロジェクト: Timelordt/pyktrader
def fix_daily_data(contlist, sdate, edate):
    for inst in contlist:
        ddf = mysqlaccess.load_daily_data_to_df('fut_daily', inst, sdate, edate)
        mdf = mysqlaccess.load_min_data_to_df('fut_min', inst, sdate, edate, minid_start=300, minid_end = 2115)
        dailydata = data_handler.conv_ohlc_freq(mdf, 'D')
        for dd in dailydata.index:
            d = dd.date()
            dslice = dailydata.ix[dd]
            if d not in ddf.index:
                ddata = {}
                ddata['date'] = d
                ddata['open'] = float(dslice.open)
                ddata['close'] = float(dslice.close)
                ddata['high'] = float(dslice.high)
                ddata['low'] = float(dslice.low)
                ddata['volume'] = int(dslice.volume)
                ddata['openInterest'] = int(dslice.openInterest)
                print inst, ddata
                mysqlaccess.insert_daily_data(inst, ddata)
コード例 #19
0
 def process_data(self, df):
     if self.freq == 1:
         xdf = df
     else:
         freq_str = str(self.freq) + "min"
         xdf = dh.conv_ohlc_freq(df, freq_str, extra_cols = ['contract'])
     xdf['band_wth'] = self.band_func(xdf, n = self.boll_len).fillna(method = 'bfill')
     xdf['band_mid'] = self.ma_func(xdf, n=self.boll_len)
     xdf['band_up'] = xdf['band_mid'] + xdf['band_wth'] * self.band_ratio
     xdf['band_dn'] = xdf['band_mid'] - xdf['band_wth'] * self.band_ratio
     xdf['filter_ind'] = self.filter_func(xdf, self.filter_len)
     xdf['chan_h'] = dh.DONCH_H(xdf, self.channel)
     xdf['chan_l'] = dh.DONCH_L(xdf, self.channel)
     xdf['tr_stop_h'] = xdf['chan_h'] - (xdf['band_wth'] * self.SL / self.tick_base).astype('int') * self.tick_base
     xdf['tr_stop_l'] = xdf['chan_l'] + (xdf['band_wth'] * self.SL / self.tick_base).astype('int') * self.tick_base
     xdata = pd.concat([xdf['band_up'].shift(1), xdf['band_dn'].shift(1), \
                        xdf['tr_stop_h'].shift(1), xdf['tr_stop_l'].shift(1), xdf['filter_ind'].shift(1)], axis=1, \
                        keys=['band_up','band_dn', 'tr_stop_h', 'tr_stop_l', 'filter_ind'])
     self.df = df.join(xdata, how = 'left').fillna(method='ffill').dropna()
     self.df['cost'] = 0.0
     self.df['pos'] = 0.0
     self.df['closeout'] = 0.0
     self.df['traded_price'] = self.df['open']
コード例 #20
0
def chanbreak_sim(mdf, ddf, config):
    freq = config['freq']
    str_freq = str(freq) + 'Min'
    xdf = dh.conv_ohlc_freq(mdf, str_freq)
    start_equity = config['capital']
    tcost = config['trans_cost']
    unit = config['unit']
    k = config['scaler']
    marginrate = config['marginrate']
    offset = config['offset']
    win = config['win']
    chan_func = config['channel_func']
    upper_chan_func = chan_func[0]
    lower_chan_func = chan_func[1]
    entry_chan = win
    exit_chan = int(entry_chan / k[1])
    xdf['H1'] = upper_chan_func(xdf, entry_chan).shift(1)
    xdf['L1'] = lower_chan_func(xdf, entry_chan).shift(1)
    xdf['H2'] = upper_chan_func(xdf, exit_chan).shift(1)
    xdf['L2'] = lower_chan_func(xdf, exit_chan).shift(1)
    ddf['ATR'] = dh.ATR(ddf, entry_chan)
    ll = mdf.shape[0]
    mdf['pos'] = pd.Series([0] * ll, index=mdf.index)
    mdf['cost'] = pd.Series([0] * ll, index=mdf.index)
    curr_pos = []
    closed_trades = []
    end_d = mdf.index[-1].date()
    tradeid = 0
    x_idx = 0
    max_idx = len(xdf.index)
    for idx, dd in enumerate(mdf.index):
        mslice = mdf.ix[dd]
        min_id = agent.get_min_id(dd)
        d = dd.date()
        dslice = ddf.ix[d]
        while (x_idx < max_idx - 1) and (xdf.index[x_idx + 1] < dd):
            x_idx += 1
        xslice = xdf.iloc[x_idx]
        if len(curr_pos) == 0:
            pos = 0
        else:
            pos = curr_pos[0].pos
        mdf.ix[dd, 'pos'] = pos
        if np.isnan(dslice.ATR):
            continue
        if (min_id >= config['exit_min']):
            if (pos != 0) and (d == end_d):
                curr_pos[0].close(mslice.close - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                mdf.ix[dd,
                       'cost'] -= abs(pos) * (offset + mslice.close * tcost)
            continue
        else:
            if (pos != 0):
                curr_pos[0].trail_update(mslice.close)
                if curr_pos[0].trail_check(mslice.close, dslice.ATR * k[0]):
                    curr_pos[0].close(mslice.close - misc.sign(pos) * offset,
                                      dd)
                    tradeid += 1
                    curr_pos[0].exit_tradeid = tradeid
                    closed_trades.append(curr_pos[0])
                    pos = 0
                    curr_pos = []
            if ((mslice.close >= xslice.H2) and
                (pos < 0)) or ((mslice.close <= xslice.L2) and (pos > 0)):
                curr_pos[0].close(mslice.close - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                mdf.ix[dd,
                       'cost'] -= abs(pos) * (offset + mslice.close * tcost)
                pos = 0
            if ((mslice.close >= xslice.H1) and
                (pos <= 0)) or ((mslice.close <= xslice.L1) and (pos >= 0)):
                if (pos == 0):
                    target_pos = (mslice.close >= xslice.H1) * unit - (
                        mslice.close <= xslice.L1) * unit
                    new_pos = strat.TradePos([mslice.contract], [1],
                                             target_pos, mslice.close,
                                             mslice.close)
                    tradeid += 1
                    new_pos.entry_tradeid = tradeid
                    new_pos.open(mslice.close + misc.sign(target_pos) * offset,
                                 dd)
                    curr_pos.append(new_pos)
                    mdf.ix[dd,
                           'cost'] -= abs(target_pos) * (offset +
                                                         mslice.close * tcost)
                    mdf.ix[dd, 'pos'] = pos
                else:
                    print "something wrong with position=%s, close =%s, upBnd=%s, lowBnd=%s" % (
                        pos, mslice.close, xslice.H1, xslice.L1)

    (res_pnl, ts) = backtest.get_pnl_stats(mdf, start_equity, marginrate, 'm')
    res_trade = backtest.get_trade_stats(closed_trades)
    res = dict(res_pnl.items() + res_trade.items())
    return (res, closed_trades, ts)
コード例 #21
0
def bband_chan_sim( mdf, config):
    offset = config['offset']
    exit_min = config['exit_min']
    param = config['param']
    bar_func = config.get('bar_conv_func', 'dh.bar_conv_func2')
    bar_func = eval(bar_func)
    std_func = eval(config['std_func'])
    ma_func = eval(config['ma_func'])
    close_daily = config['close_daily']
    win = param[0]
    k = param[1]
    chan = param[2]
    stop_ratio = config.get('exit_stop', 0.0)
    k_e = k * stop_ratio
    if chan > 0:
        chan_func = config['chan_func']
    tcost = config['trans_cost']
    unit = config['unit']
    freq = config['freq']
    xdf = dh.conv_ohlc_freq(mdf, freq, extra_cols = ['contract'], bar_func = bar_func)
    xdf['boll_ma'] = ma_func(xdf, win).shift(1)
    xdf['boll_std'] = std_func(xdf, win).shift(1)
    xdf['upbnd'] = xdf['boll_ma'] + xdf['boll_std'] * k
    xdf['lowbnd'] = xdf['boll_ma'] - xdf['boll_std'] * k
    xdf['up_exit'] = xdf['boll_ma'] + xdf['boll_std'] * k_e
    xdf['dn_exit'] = xdf['boll_ma'] - xdf['boll_std'] * k_e
    if chan > 0:
        xdf['chan_h'] = eval(chan_func['high']['func'])(xdf, chan, **chan_func['high']['args']).shift(1)
        xdf['chan_l'] = eval(chan_func['low']['func'])(xdf, chan, **chan_func['low']['args']).shift(1)
    else:
        xdf['chan_h'] = -10000000
        xdf['chan_l'] = 10000000
    xdf['high_band'] = xdf[['chan_h', 'upbnd']].max(axis=1)
    xdf['low_band'] = xdf[['chan_l', 'lowbnd']].min(axis=1)
    xdata = pd.concat([xdf['high_band'], xdf['low_band'],
                       xdf['up_exit'], xdf['dn_exit'], xdf['boll_ma']],
                      axis=1, keys=['high_band','low_band', 'up_exit', 'dn_exit', 'boll_ma'])
    mdf = mdf.join(xdata, how = 'left').fillna(method='ffill')
    # mdf['prev_close'] = mdf['close'].shift(1)
    mdf['close_ind'] = np.isnan(mdf['close'].shift(-3))
    if close_daily:
        mdf['close_ind'] = (mdf['min_id'] >= exit_min) | mdf['close_ind']
    long_signal = pd.Series(np.nan, index = mdf.index)
    long_signal[(mdf['open']>=mdf['high_band']) & (mdf['boll_ma'].notnull())] = 1
    long_signal[(mdf['open']<=mdf['dn_exit']) & (mdf['boll_ma'].notnull())] = 0
    long_signal[mdf['close_ind']] = 0
    long_signal = long_signal.fillna(method='ffill').fillna(0)
    short_signal = pd.Series(np.nan, index = mdf.index)
    short_signal[(mdf['open']<=mdf['low_band']) & (mdf['boll_ma'].notnull())] = -1
    short_signal[(mdf['open']>=mdf['up_exit']) & (mdf['boll_ma'].notnull())] = 0
    short_signal[mdf['close_ind']] = 0
    short_signal = short_signal.fillna(method='ffill').fillna(0)
    if len(mdf[(long_signal>0) & (short_signal<0)])>0:
        print mdf[(long_signal > 0) & (short_signal < 0)]
        print "something wrong with the position as long signal and short signal happen the same time"
    mdf['pos'] = long_signal + short_signal
    mdf['cost'] = abs(mdf['pos'] - mdf['pos'].shift(1)) * (offset + mdf['open'] * tcost)
    mdf['cost'] = mdf['cost'].fillna(0.0)
    mdf['traded_price'] = mdf.open + (mdf['pos'] - mdf['pos'].shift(1)) * offset
    closed_trades = backtest.simdf_to_trades1(mdf, slippage = offset )
    return (mdf, closed_trades)
コード例 #22
0
def aberration_sim(mdf, config):
    start_equity = config['capital']
    marginrate = config['marginrate']
    offset = config['offset']
    pos_class = config['pos_class']
    pos_args = config['pos_args']
    param = config['param']
    tick_base = config['tick_base']
    close_daily = config['close_daily']
    win = param[0]
    k = param[1]
    chan = param[2]
    if chan > 0:
        chan_func = config['chan_func']
    tcost = config['trans_cost']
    unit = config['unit']
    freq = config['freq']
    #freq_min = int(freq[:-3])
    mode = config.get('mode', 'close')
    xdf = dh.conv_ohlc_freq(mdf, freq)
    boll_ma = dh.MA(xdf, win).shift(1)
    boll_std = dh.STDDEV(xdf, win).shift(1)
    upbnd = np.ceil((boll_ma + boll_std * k) / tick_base) * tick_base
    lowbnd = np.floor((boll_ma - boll_std * k) / tick_base) * tick_base
    boll_ma = np.floor(boll_ma / tick_base + 0.5) * tick_base
    xdata = [boll_ma, boll_std, upbnd, lowbnd, xdf['min_id']]
    xkeys = ['ma', 'stdev', 'upbnd', 'lowbnd', 'xmin_id']
    if chan > 0:
        chan_h = eval(chan_func['high']['func'])(xdf, chan,
                                                 **chan_func['high']['args'])
        chan_l = eval(chan_func['low']['func'])(xdf, chan,
                                                **chan_func['low']['args'])
        xdata = xdata + [chan_h, chan_l]
        xkeys = xkeys + ['chan_h', 'chan_l']
    xdf = pd.concat(xdata, axis=1, keys=xkeys).fillna(0)
    mdf = mdf.join(xdf, how='left').fillna(method='ffill')
    mdf['is_new'] = (mdf['xmin_id'].shift(1) != mdf['xmin_id'])
    ll = mdf.shape[0]
    mdf['pos'] = pd.Series([0] * ll, index=mdf.index)
    mdf['cost'] = pd.Series([0] * ll, index=mdf.index)
    curr_pos = []
    closed_trades = []
    start_d = mdf.date[0]
    end_d = mdf.date[-1]
    tradeid = 0
    for idx, dd in enumerate(mdf.index):
        mslice = mdf.ix[dd]
        min_id = mslice.min_id
        d = mslice.date
        if len(curr_pos) == 0:
            pos = 0
            start_pos = 0
        else:
            pos = curr_pos[0].pos
            start_pos = pos
        mdf.ix[dd, 'pos'] = pos
        if mslice.ma == 0:
            continue
        upbnd = mslice.upbnd
        lowbnd = mslice.lowbnd
        if chan > 0:
            if mslice.chan_h == 0:
                continue
            else:
                upbnd = max(mslice.chan_h, upbnd)
                lowbnd = min(mslice.chan_l, lowbnd)
        if min_id >= config['exit_min']:
            if (pos != 0) and ((d == end_d) or close_daily):
                curr_pos[0].close(mslice.close - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                mdf.ix[dd,
                       'cost'] -= abs(pos) * (offset + mslice.close * tcost)
                pos = 0
        else:
            if mode == 'close':
                high_trig = mslice.close
                low_trig = mslice.close
                trade_price = mslice.close
            else:
                high_trig = mslice.high
                low_trig = mslice.low
                trade_price = mslice.open
            if ((high_trig >= mslice.ma) and
                (pos < 0)) or ((low_trig <= mslice.ma) and (pos > 0)):
                if pos < 0:
                    exec_price = max(trade_price, mslice.ma)
                else:
                    exec_price = min(trade_price, mslice.ma)
                curr_pos[0].close(exec_price - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                mdf.ix[dd, 'cost'] -= abs(pos) * (offset + exec_price * tcost)
                pos = 0
            if ((high_trig > upbnd) and (pos <= 0)) or ((low_trig < lowbnd) and
                                                        (pos >= 0)):
                target_pos = (high_trig > upbnd) * unit - (low_trig <
                                                           lowbnd) * unit
                if target_pos == 0:
                    print "the min bar hit both up and low bounds, need to think about how to handle it", start_pos, mslice
                    if mslice.close > mslice.ma:
                        target_pos = (high_trig > upbnd) * unit
                        target = max(trade_price, upbnd)
                    else:
                        trade_pos = -(low_trig < lowbnd) * unit
                        target = min(trade_price, lowbnd)
                else:
                    target = (high_trig > upbnd) * max(trade_price, upbnd) + (
                        low_trig < lowbnd) * min(trade_price, lowbnd)
                new_pos = pos_class([mslice.contract], [1], target_pos, target,
                                    target, **pos_args)
                tradeid += 1
                new_pos.entry_tradeid = tradeid
                new_pos.open(target + misc.sign(target_pos) * offset, dd)
                curr_pos.append(new_pos)
                pos = target_pos
                mdf.ix[dd,
                       'cost'] -= abs(target_pos) * (offset + target * tcost)
        mdf.ix[dd, 'pos'] = pos
    return (mdf, closed_trades)
コード例 #23
0
ファイル: bkvec_asctrend.py プロジェクト: zixys/pyktrader2
def asctrend_sim(mdf, config):
    offset = config['offset']
    tcost = config['trans_cost']
    bar_func = config.get('bar_conv_func', 'dh.bar_conv_func2')
    param = config['param']
    freq = config['freq']
    close_daily = config['close_daily']
    xdf = dh.conv_ohlc_freq(mdf,
                            freq,
                            extra_cols=['contract'],
                            bar_func=eval(bar_func))
    wpr_period = param[0]
    wpr_level = param[1]
    rsi_sig = config['rsi_sig']
    wpr_sig = config.get('wpr_sig', True)
    wpr = dh.WPR(xdf, wpr_period)
    wpr_buy = 50 + wpr_level
    wpr_sell = 50 - wpr_level
    wpr_signal = pd.Series(0, index=wpr.index)
    if wpr_sig:
        wpr_signal[dh.CROSSOVER(wpr, wpr_buy, 1)] = 1
        wpr_signal[dh.CROSSOVER(wpr, wpr_sell, -1)] = -1
    else:
        wpr_signal[(wpr >= wpr_buy)] = 1
        wpr_signal[(wpr <= wpr_sell)] = -1
    xdf['wpr_signal'] = wpr_signal.shift(1).fillna(0)
    rsi_period = param[2]
    rsi_offset = param[3]
    rsi_buy = 50 + rsi_offset
    rsi_sell = 50 - rsi_offset
    rsi = dh.RSI(xdf, n=rsi_period)
    rsi_signal = pd.Series(0, index=rsi.index)
    if rsi_sig:
        rsi_signal[dh.CROSSOVER(rsi, rsi_buy, 1)] = 1
        rsi_signal[dh.CROSSOVER(rsi, rsi_sell, -1)] = -1
    else:
        rsi_signal[(rsi >= rsi_buy)] = 1
        rsi_signal[(rsi <= rsi_sell)] = -1
    xdf['rsi_signal'] = rsi_signal.shift(1).fillna(0)
    if len(param) > 4:
        sar_step = param[4]
        sar_max = param[5]
    else:
        sar_step = 0.005
        sar_max = 0.02
    sar = dh.SAR(xdf, incr=sar_step, maxaf=sar_max)
    sar_signal = pd.Series(0, index=sar.index)
    sar_signal[(sar < xdf['close'])] = 1
    sar_signal[(sar > xdf['close'])] = -1
    xdf['sar_signal'] = sar_signal.shift(1)
    xdf['sar_stop'] = sar.shift(1)
    xdf['close_ind'] = np.isnan(xdf['close'].shift(-1))
    if close_daily:
        daily_end = (xdf['date'] != xdf['date'].shift(-1))
        xdf['close_ind'] = xdf['close_ind'] | daily_end
    long_signal = pd.Series(np.nan, index=xdf.index)
    short_signal = pd.Series(np.nan, index=xdf.index)
    long_signal[(xdf['wpr_signal'] > 0) & (xdf['rsi_signal'] > 0) &
                (xdf['sar_signal'] > 0)] = 1
    long_signal[(xdf['wpr_signal'] < 0) | (xdf['rsi_signal'] < 0)] = 0
    long_signal[xdf['close_ind']] = 0
    long_signal = long_signal.fillna(method='ffill').fillna(0)
    short_signal[(xdf['wpr_signal'] < 0) & (xdf['rsi_signal'] < 0) &
                 (xdf['sar_signal'] < 0)] = -1
    short_signal[(xdf['wpr_signal'] > 0) | (xdf['rsi_signal'] > 0)] = 0
    short_signal[xdf['close_ind']] = 0
    short_signal = short_signal.fillna(method='ffill').fillna(0)
    if len(xdf[(long_signal > 0) & (short_signal < 0)]) > 0:
        print xdf[(long_signal > 0) & (short_signal < 0)]
        print "something wrong with the position as long signal and short signal happen the same time"
    xdf['pos'] = long_signal + short_signal
    xdf['cost'] = abs(xdf['pos'] - xdf['pos'].shift(1)) * (offset +
                                                           xdf['open'] * tcost)
    xdf['cost'] = xdf['cost'].fillna(0.0)
    xdf['traded_price'] = xdf.open + (xdf['pos'] -
                                      xdf['pos'].shift(1)) * offset
    closed_trades = backtest.simdf_to_trades1(xdf, slippage=offset)
    return (xdf, closed_trades)
コード例 #24
0
ファイル: agent.py プロジェクト: harveywwu/pyktrader2
 def prepare_data_env(self, inst, mid_day = True):
     if  self.instruments[inst].ptype == instrument.ProductType.Option:
         return
     self.db_conn = dbaccess.connect(**dbaccess.dbconfig)
     if self.daily_data_days > 0 or mid_day:
         #self.logger.debug('Updating historical daily data for %s' % self.scur_day.strftime('%Y-%m-%d'))
         daily_start = workdays.workday(self.scur_day, -self.daily_data_days, CHN_Holidays)
         daily_end = self.scur_day
         ddf = dbaccess.load_daily_data_to_df(self.db_conn, 'fut_daily', inst, daily_start, daily_end, index_col = None)
         if len(ddf) > 0:
             self.instruments[inst].price = self.instruments[inst].mid_price = ddf['close'].iloc[-1]
             self.instruments[inst].last_update = 0
             self.instruments[inst].prev_close = ddf['close'].iloc[-1]
             for fobj in self.day_data_func[inst]:
                 ts = fobj.sfunc(ddf)
                 if type(ts).__name__ == 'Series':
                     if ts.name in ddf.columns:
                         self.logger.warning('TimeSeries name %s is already in the columns for inst = %s' % (ts.name, inst))                    
                     ddf[ts.name]= ts
                 elif type(ts).__name__ == 'DataFrame':
                     for col_name in ts.columns:
                         if col_name in ddf.columns:
                             self.logger.warning('TimeSeries name %s is already in the columns for inst = %s' % (col_name, inst))                            
                         ddf[col_name] = ts[col_name]
         self.day_data[inst] = data_handler.DynamicRecArray(dataframe = ddf)
     if self.min_data_days > 0 or mid_day:
         #self.logger.debug('Updating historical min data for %s' % self.scur_day.strftime('%Y-%m-%d'))
         d_start = workdays.workday(self.scur_day, -self.min_data_days, CHN_Holidays)
         d_end = self.scur_day
         min_start = int(self.instruments[inst].start_tick_id/1000)
         min_end = int(self.instruments[inst].last_tick_id/1000)+1
         mdf = dbaccess.load_min_data_to_df(self.db_conn, 'fut_min', inst, d_start, d_end, minid_start=min_start, minid_end=min_end, index_col = None)
         mdf = cleanup_mindata(mdf, self.instruments[inst].product, index_col = None)
         mdf['bar_id'] = self.conv_bar_id(mdf['min_id'])
         if len(mdf)>0:
             min_date = mdf['date'].iloc[-1]
             if (len(self.day_data[inst])==0) or (min_date > self.day_data[inst].data['date'][-1]):
                 ddf = data_handler.conv_ohlc_freq(mdf, 'd', index_col = None)
                 self.cur_day[inst]['open'] = float(ddf.open[-1])
                 self.cur_day[inst]['close'] = float(ddf.close[-1])
                 self.cur_day[inst]['high'] = float(ddf.high[-1])
                 self.cur_day[inst]['low'] = float(ddf.low[-1])
                 self.cur_day[inst]['volume'] = int(ddf.volume[-1])
                 self.cur_day[inst]['openInterest'] = int(ddf.openInterest[-1])
                 self.cur_min[inst]['datetime'] = pd.datetime(*mdf['datetime'].iloc[-1].timetuple()[0:-3])
                 self.cur_min[inst]['date'] = mdf['date'].iloc[-1]
                 self.cur_min[inst]['open'] = float(mdf['open'].iloc[-1])
                 self.cur_min[inst]['close'] = float(mdf['close'].iloc[-1])
                 self.cur_min[inst]['high'] = float(mdf['high'].iloc[-1])
                 self.cur_min[inst]['low'] = float(mdf['low'].iloc[-1])
                 self.cur_min[inst]['volume'] = self.cur_day[inst]['volume']
                 self.cur_min[inst]['openInterest'] = self.cur_day[inst]['openInterest']
                 self.cur_min[inst]['min_id'] = int(mdf['min_id'].iloc[-1])
                 self.cur_min[inst]['bar_id'] = self.conv_bar_id(self.cur_min[inst]['min_id'])
                 self.instruments[inst].price = self.instruments[inst].mid_price = float(mdf['close'].iloc[-1])
                 self.instruments[inst].last_update = 0
                 #self.logger.debug('inst=%s tick data loaded for date=%s' % (inst, min_date))
             if 1 not in self.min_data_func[inst]:
                 self.min_data[inst][1] = data_handler.DynamicRecArray(dataframe = mdf)
             for m in sorted(self.min_data_func[inst]):
                 if m != 1:
                     mdf_m = data_handler.conv_ohlc_freq(mdf, str(m)+'min', index_col = None, bar_func = self.conv_bar_id, extra_cols = ['bar_id'])
                 else:
                     mdf_m = mdf
                 for fobj in self.min_data_func[inst][m]:
                     ts = fobj.sfunc(mdf_m)
                     if type(ts).__name__ == 'Series':
                         if ts.name in mdf_m.columns:
                             self.logger.warning('TimeSeries name %s is already in the columns for inst = %s' % (ts.name, inst))                        
                         mdf_m[ts.name]= ts
                     elif type(ts).__name__ == 'DataFrame':
                         for col_name in ts.columns:
                             if col_name in mdf_m.columns:
                                 self.logger.warning('TimeSeries name %s is already in the columns for inst = %s' % (col_name, inst))
                             mdf_m[col_name] = ts[col_name]                        
                 self.min_data[inst][m] = data_handler.DynamicRecArray(dataframe = mdf_m)
                 #print inst, self.min_data[inst][m].data['date'][-1] < self.cur_min[inst]['date']
     self.db_conn.close()
コード例 #25
0
def fisher_swing_sim(mdf, config):
    pos_class = config['pos_class']
    pos_args = config['pos_args']
    pos_update = config.get('pos_update', False)
    offset = config['offset']
    close_daily = config['close_daily']
    tcost = config['trans_cost']
    unit = config['unit']
    freq = config['freq']
    param = config['param']
    fisher_n = param[0]
    bband_n = param[1]
    bband_std = param[2]
    heiken_n = param[3]
    xdf = dh.conv_ohlc_freq(mdf, freq, extra_cols=['contract'])
    fisher = dh.FISHER(xdf, win[0])
    xdf['FISHER_I'] = fisher['FISHER_I'].shift(1)
    bbands_stop = dh.BBANDS_STOP(xdf, win[1], 1.0)
    xdf['BBSTOP_upper'] = bbands_stop['BBSTOP_upper'].shift(1)
    xdf['BBSTOP_lower'] = bbands_stop['BBSTOP_lower'].shift(1)
    xdf['BBSTOP_trend'] = bbands_stop['BBSTOP_trend'].shift(1)
    ha_df = dh.HEIKEN_ASHI(xdf, win[2]).shift(1)
    xdf['HAopen'] = ha_df['HAopen'].shift(1)
    xdf['HAclose'] = ha_df['HAclose'].shift(1)
    xdf['prev_close'] = xdf['close'].shift(1)
    xdf['close_ind'] = np.isnan(xdf['close'].shift(-1))
    if close_daily:
        daily_end = (xdf['date'] != xdf['date'].shift(-1))
        xdf['close_ind'] = xdf['close_ind'] | daily_end
    xdf['pos'] = 0
    xdf['cost'] = 0
    xdf['traded_price'] = xdf.open
    curr_pos = []
    closed_trades = []
    tradeid = 0
    for idx, dd in enumerate(xdf.index):
        mslice = xdf.loc[dd]
        min_id = mslice.min_id
        d = dd.date()
        if len(curr_pos) == 0:
            pos = 0
        else:
            pos = curr_pos[0].pos
        xdf.set_value(dd, 'pos', pos)
        if np.isnan(mslice.BBSTOP_lower) or np.isnan(
                mslice.FISHER_I) or np.isnan(mslice.HAclose):
            continue
        stop_loss = (pos > 0) and ((mslice.open < mslice.BBSTOP_lower) or
                                   (mslice.FISHER_I < 0))
        stop_loss = stop_loss or ((pos < 0) and
                                  ((mslice.open > mslice.BBSTOP_upper) or
                                   (mslice.FISHER_I > 0)))
        start_long = (mslice.FISHER_I > 0) and (
            mslice.HAclose > mslice.HAopen) and (mslice.BBSTOP_trend > 0)
        start_short = (mslice.FISHER_I < 0) and (
            mslice.HAclose < mslice.HAopen) and (mslice.BBSTOP_trend < 0)
        if mslice.close_ind:
            if pos != 0:
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(
                    dd, 'cost',
                    xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open - misc.sign(pos) * offset)
                pos = 0
        else:
            if stop_loss:
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(
                    dd, 'cost',
                    xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open - misc.sign(pos) * offset)
                pos = 0
            pos = (start_long == True) * unit - (start_short == True) * unit
            if abs(pos) > 0:
                #target = (start_long == True) * mslice.close +(start_short == True) * mslice.close
                new_pos = pos_class([mslice.contract], [1], pos, mslice.open,
                                    mslice.open, **pos_args)
                tradeid += 1
                new_pos.entry_tradeid = tradeid
                new_pos.open(mslice.open + misc.sign(pos) * offset, dd)
                curr_pos.append(new_pos)
                xdf.set_value(
                    dd, 'cost',
                    xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open + misc.sign(pos) * offset)
        xdf.ix[dd, 'pos'] = pos
    return (xdf, closed_trades)
コード例 #26
0
ファイル: bktest_MA_system.py プロジェクト: zixys/pyktrader2
def MA_sim(mdf, config):
    offset = config['offset']
    use_chan = config['use_chan']
    pos_class = config['pos_class']
    pos_args = config['pos_args']
    pos_update = config.get('pos_update', False)
    stoploss = config.get('stoploss', 0.0)
    win_list = config['param']
    MA_func = eval(config['MA_func'])
    close_daily = config['close_daily']
    tcost = config['trans_cost']
    unit = config['unit']
    freq = config['freq']
    chan_ratio = config['channel_ratio']
    channel = int(chan_ratio * win_list[-1])
    xdf = dh.conv_ohlc_freq(mdf, freq, extra_cols=['contract'])
    for idx, win in enumerate(win_list):
        xdf['MA' + str(idx)] = MA_func(xdf, win).shift(1)
    if use_chan:
        xdf['chan_high'] = eval(config['channel_func'][0])(
            xdf, channel, **config['channel_args'][0]).shift(2)
        xdf['chan_low'] = eval(config['channel_func'][1])(
            xdf, channel, **config['channel_args'][1]).shift(2)
    else:
        xdf['chan_high'] = pd.Series(index=xdf.index)
        xdf['chan_low'] = pd.Series(index=xdf.index)
    tot_MA = len(win_list)
    xdf['prev_close'] = xdf['close'].shift(1)
    xdf['close_ind'] = np.isnan(xdf['close'].shift(-1))
    if close_daily:
        daily_end = (xdf['date'] != xdf['date'].shift(-1))
        xdf['close_ind'] = xdf['close_ind'] | daily_end
    ll = xdf.shape[0]
    xdf['pos'] = 0
    xdf['cost'] = 0
    xdf['traded_price'] = xdf.open
    curr_pos = []
    closed_trades = []
    tradeid = 0
    for idx, dd in enumerate(xdf.index):
        mslice = xdf.loc[dd]
        ma_list = [
            getattr(mslice, 'MA' + str(i)) for i in range(len(win_list))
        ]
        ma_short = ma_list[0]
        ma_last = ma_list[-1]
        if len(curr_pos) == 0:
            pos = 0
        else:
            pos = curr_pos[0].pos
        xdf.set_value(dd, 'pos', pos)
        if np.isnan(getattr(mslice, "MA" + str(tot_MA - 1))):
            continue
        if mslice.close_ind:
            if pos != 0:
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(
                    dd, 'cost',
                    xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open - misc.sign(pos) * offset)
                pos = 0
        else:
            if (((ma_short >= ma_last) or
                 (mslice.open >= mslice.chan_high)) and
                (pos < 0)) or (((ma_short <= ma_last) or
                                (mslice.open <= mslice.chan_low)) and
                               (pos > 0)):
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(
                    dd, 'cost',
                    xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open - misc.sign(pos) * offset)
                pos = 0
            if (((ma_short >= ma_list[1]) and (ma_short >= ma_last) and ((use_chan == False) or (mslice.open>=mslice.chan_high))) or \
                        ((ma_short <= ma_list[1]) and (ma_short <= ma_last) and ((use_chan == False) or (mslice.open<=mslice.chan_low)))) and (pos==0):
                target_pos = ((ma_short >= ma_list[1]) and (ma_short >= ma_last) and ((use_chan == False) or (mslice.open>=mslice.chan_high))) * unit \
                             - ((ma_short <= ma_list[1]) and (ma_short <= ma_last) and ((use_chan == False) or (mslice.open<=mslice.chan_low))) * unit
                new_pos = pos_class([mslice.contract], [1], target_pos,
                                    mslice.open, mslice.open, **pos_args)
                tradeid += 1
                new_pos.entry_tradeid = tradeid
                new_pos.open(mslice.open + misc.sign(target_pos) * offset, dd)
                curr_pos.append(new_pos)
                pos = target_pos
                xdf.set_value(
                    dd, 'cost', xdf.at[dd, 'cost'] - abs(target_pos) *
                    (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open + misc.sign(target_pos) * offset)
        xdf.set_value(dd, 'pos', pos)
    return (xdf, closed_trades)
コード例 #27
0
ファイル: bktest_ma_ribbon.py プロジェクト: zixys/pyktrader2
def MA_sim(mdf, config):
    offset = config['offset']
    pos_class = config['pos_class']
    pos_args = config['pos_args']
    pos_update = config.get('pos_update', False)
    stoploss = config.get('stoploss', 0.0)
    ma_list = config['ma_list']
    param = config['param']
    corr_entry = param[0]
    corr_exit = param[1]
    pval_entry = param[2]
    pval_exit = param[3]
    if len(param) >= 5:
        channel = param[4]
    else:
        channel = 0
    if channel == 0:
        use_chan = False
    else:
        use_chan = True
    close_daily = config['close_daily']
    tcost = config['trans_cost']
    unit = config['unit']
    freq = config['freq']
    if int(freq[:-3]) == 1:
        xdf = mdf
    else:
        xdf = dh.conv_ohlc_freq(mdf, freq, extra_cols=['contract'])
    if use_chan:
        xdf['chan_high'] = eval(config['channel_func'][0])(
            xdf, channel, **config['channel_args'][0]).shift(2)
        xdf['chan_low'] = eval(config['channel_func'][1])(
            xdf, channel, **config['channel_args'][1]).shift(2)
    else:
        xdf['chan_high'] = pd.Series(index=xdf.index)
        xdf['chan_low'] = pd.Series(index=xdf.index)
    ma_ribbon = dh.MA_RIBBON(xdf, ma_list)
    xdf["ribbon_corr"] = ma_ribbon["MARIBBON_CORR"].shift(1)
    xdf["ribbon_pval"] = ma_ribbon["MARIBBON_PVAL"].shift(1)
    xdf["ribbon_dist"] = ma_ribbon["MARIBBON_DIST"].shift(1)
    xdf['prev_close'] = xdf['close'].shift(1)
    xdf['close_ind'] = np.isnan(xdf['close'].shift(-1))
    if close_daily:
        daily_end = (xdf['date'] != xdf['date'].shift(-1))
        xdf['close_ind'] = xdf['close_ind'] | daily_end
    ll = xdf.shape[0]
    xdf['pos'] = 0
    xdf['cost'] = 0
    xdf['traded_price'] = xdf.open
    curr_pos = []
    closed_trades = []
    tradeid = 0
    for idx, dd in enumerate(xdf.index):
        mslice = xdf.loc[dd]
        if len(curr_pos) == 0:
            pos = 0
        else:
            pos = curr_pos[0].pos
        xdf.set_value(dd, 'pos', pos)
        if np.isnan(mslice.ribbon_corr):
            continue
        if mslice.close_ind:
            if pos != 0:
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(
                    dd, 'cost',
                    xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open - misc.sign(pos) * offset)
                pos = 0
        else:
            if (((mslice.ribbon_corr >= -corr_exit) or (mslice.ribbon_pval >= pval_exit)) and (pos<0)) or \
                    (((mslice.ribbon_corr <= corr_exit) or (mslice.ribbon_pval >= pval_exit)) and (pos>0)):
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(
                    dd, 'cost',
                    xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open - misc.sign(pos) * offset)
                pos = 0
            if (pos==0) and (mslice.ribbon_corr >= corr_entry) and (mslice.ribbon_pval < pval_entry) \
                    and ((use_chan == False) or (mslice.open >= mslice.chan_high)):
                target_pos = unit
            elif (pos==0) and (mslice.ribbon_corr <= -corr_entry) and (mslice.ribbon_pval < pval_entry) \
                    and ((use_chan == False) or (mslice.open <= mslice.chan_low)):
                target_pos = -unit
            else:
                target_pos = 0
            if target_pos != 0:
                new_pos = pos_class([mslice.contract], [1], target_pos,
                                    mslice.open, mslice.open, **pos_args)
                tradeid += 1
                new_pos.entry_tradeid = tradeid
                new_pos.open(mslice.open + misc.sign(target_pos) * offset, dd)
                curr_pos.append(new_pos)
                pos = target_pos
                xdf.set_value(
                    dd, 'cost', xdf.at[dd, 'cost'] - abs(target_pos) *
                    (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open + misc.sign(target_pos) * offset)
        xdf.set_value(dd, 'pos', pos)
    return (xdf, closed_trades)
コード例 #28
0
def rbreaker_sim( mdf, config):
    if 'ddf' in config:
        ddf = config['ddf']
    else:
        freq = config['freq']
        ddf = dh.conv_ohlc_freq(mdf, freq)
    start_equity = config['capital']
    tcost = config['trans_cost']
    unit = config['unit']
    pos_class = config['pos_class']
    pos_args  = config['pos_args']
    close_daily = config['close_daily']
    marginrate = config['marginrate']
    offset = config['offset']
    min_rng = config['min_rng']
    k = config['params']
    a = k[0]
    b = k[1]
    c = k[2]
    ddf['range'] = ddf.high - ddf.low
    ddf['ssetup'] = ddf.high + a*(ddf.close - ddf.low)
    ddf['bsetup'] = ddf.low  - a*(ddf.high - ddf.close)
    ddf['senter'] = (1+b)*(ddf.high+ddf.close)/2.0 - b * ddf.low
    ddf['benter'] = (1+b)*(ddf.low+ddf.close)/2.0 - b * ddf.high
    ddf['bbreak'] = ddf.ssetup + c * (ddf.ssetup - ddf.bsetup)
    ddf['sbreak'] = ddf.bsetup - c * (ddf.ssetup - ddf.bsetup)
    ddf = ddf.shift(1)
    ll = mdf.shape[0]
    mdf['pos'] = pd.Series([0]*ll, index = mdf.index)
    mdf['cost'] = pd.Series([0]*ll, index = mdf.index)
    curr_pos = []
    closed_trades = []
    start_d = mdf.index[0].date()
    end_d = mdf.index[-1].date()
    prev_d = start_d - datetime.timedelta(days=1)
    tradeid = 0
    cur_high = 0
    cur_low = 0
    rev_flag = True
    dslice = None
    num_trades = 0
    for dd in mdf.index:
        mslice = mdf.ix[dd]
        min_id = mslice.min_id
        d = mslice.date
        if (prev_d < d):
            num_trades = 0
            cur_high = mslice.high
            cur_low = mslice.low
            if d not in ddf.index:
                print d, dd
                continue
            else:
                dslice = ddf.ix[d]
            if np.isnan(dslice.bbreak):
                continue
            if dslice.range < min_rng * dslice.close:
                rev_flag = False
            else:
                rev_flag = True
            prev_d = d
        else:
            cur_high = max(cur_high, mslice.high)
            cur_low = min(cur_low, mslice.low)
        if len(curr_pos) == 0:
            pos = 0
        else:
            pos = curr_pos[0].pos
        mdf.ix[dd, 'pos'] = pos
        if (min_id <= config['start_min']):
            continue
        if (min_id >= config['exit_min']):
            if (pos != 0) and (close_daily or (d == end_d)):
                curr_pos[0].close(mslice.close - misc.sign(pos) * offset , dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                mdf.ix[dd, 'cost'] -=  abs(pos) * (offset + mslice.close*tcost) 
                pos = 0
        else:
            if num_trades >=3:
                continue
            if ((mslice.high >= dslice.bbreak) and (pos <= 0)) or ((mslice.low <= dslice.sbreak) and (pos >= 0)):
                rev_flag = False
                if (mslice.close >= dslice.bbreak):
                    direction = 1
                else:
                    direction = -1
                if pos != 0:
                    curr_pos[0].close(mslice.close + direction*offset, dd)
                    tradeid += 1
                    curr_pos[0].exit_tradeid = tradeid
                    closed_trades.append(curr_pos[0])
                    curr_pos = []
                    mdf.ix[dd, 'cost'] -=  abs(pos) * (offset + mslice.close*tcost)
                new_pos = pos_class([mslice.contract], [1], unit*direction, mslice.close, 0, **pos_args)
                tradeid += 1
                new_pos.entry_tradeid = tradeid
                new_pos.open(mslice.close + offset*direction, dd)
                curr_pos.append(new_pos)
                pos = unit*direction
                mdf.ix[dd, 'cost'] -=  abs(direction) * (offset + mslice.close*tcost)
                num_trades += 1
            elif rev_flag and (((cur_high < dslice.bbreak) and (cur_high >= dslice.ssetup) and (mslice.close <= dslice.senter) and (pos >=0)) or \
                            ((cur_low > dslice.sbreak)  and (cur_low  <= dslice.bsetup) and (mslice.close >= dslice.benter) and (pos <=0))):
                if len(curr_pos) > 0:
                    curr_pos[0].close(mslice.close-misc.sign(pos)*offset, dd)
                    tradeid += 1
                    curr_pos[0].exit_tradeid = tradeid
                    closed_trades.append(curr_pos[0])
                    curr_pos = []
                    mdf.ix[dd, 'cost'] -=  abs(pos) * (offset + mslice.close*tcost)
                new_pos = pos_class([mslice.contract], [1], -unit*misc.sign(pos), mslice.close, 0, **pos_args)
                tradeid += 1
                new_pos.entry_tradeid = tradeid
                new_pos.open(mslice.close + offset*misc.sign(pos), dd)
                curr_pos.append(new_pos)
                pos = -unit*misc.sign(pos)
                mdf.ix[dd, 'cost'] -=  abs(pos) * (offset + mslice.close*tcost)
                num_trades += 1
        mdf.ix[dd, 'pos'] = pos
    return (mdf, closed_trades)
コード例 #29
0
ファイル: bktest_chanbreak.py プロジェクト: zixys/pyktrader2
def chanbreak_sim(mdf, config):
    freq = config['freq']
    str_freq = str(freq) + 'Min'
    xdf = dh.conv_ohlc_freq(mdf, str_freq)
    tcost = config['trans_cost']
    unit = config['unit']
    offset = config['offset']
    win = config['win']
    pos_class = config['pos_class']
    pos_args = config['pos_args']
    chan_func = config['channel_func']
    upper_chan_func = chan_func[0]
    lower_chan_func = chan_func[1]
    entry_chan = win[0]
    exit_chan = win[1]
    xdf['H1'] = upper_chan_func(xdf, entry_chan)
    xdf['L1'] = lower_chan_func(xdf, entry_chan)
    xdf['H2'] = upper_chan_func(xdf, exit_chan)
    xdf['L2'] = lower_chan_func(xdf, exit_chan)
    xdf['ATR'] = dh.ATR(xdf, entry_chan)
    xdata = pd.concat([xdf['H1'], xdf['L1'], xdf['H2'], xdf['L2'], xdf['ATR'], xdf['high'], xdf['low']], \
                      axis=1, keys=['H1', 'L1', 'H2', 'L2', 'ATR', 'xhigh', 'xlow']).shift(1)
    ll = mdf.shape[0]
    mdf = mdf.join(xdata, how='left').fillna(method='ffill')
    mdf['pos'] = pd.Series([0] * ll, index=mdf.index)
    mdf['cost'] = pd.Series([0] * ll, index=mdf.index)
    curr_pos = []
    closed_trades = []
    end_d = mdf.index[-1].date()
    tradeid = 0
    for idx, dd in enumerate(mdf.index):
        mslice = mdf.ix[dd]
        min_id = mslice.min_id
        cnt_id = count_min_id(dd)
        if len(curr_pos) == 0:
            pos = 0
        else:
            pos = curr_pos[0].pos
        mdf.ix[dd, 'pos'] = pos
        #if np.isnan(mslice.ATR):
        #    continue
        if (min_id >= config['exit_min']):
            if (pos != 0) and (dd.date() == end_d):
                curr_pos[0].close(mslice.close - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                pos = 0
                mdf.ix[dd,
                       'cost'] -= abs(pos) * (offset + mslice.close * tcost)
            continue
        else:
            if (pos != 0):
                if (cnt_id % freq) == 0:
                    curr_pos[0].update_bar(mslice)
                check_price = (pos > 0) * mslice.low + (pos < 0) * mslice.high
                if curr_pos[0].check_exit(check_price, 0):
                    curr_pos[0].close(mslice.close - misc.sign(pos) * offset,
                                      dd)
                    tradeid += 1
                    curr_pos[0].exit_tradeid = tradeid
                    closed_trades.append(curr_pos[0])
                    pos = 0
                    curr_pos = []
            if ((mslice.high >= mslice.H2) and
                (pos < 0)) or ((mslice.low <= mslice.L2) and (pos > 0)):
                curr_pos[0].close(mslice.close - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                mdf.ix[dd,
                       'cost'] -= abs(pos) * (offset + mslice.close * tcost)
                pos = 0
            if ((mslice.high >= mslice.H1) and
                (pos <= 0)) or ((mslice.low <= mslice.L1) and (pos >= 0)):
                if (pos == 0):
                    pos = (mslice.high >=
                           mslice.H1) * unit - (mslice.low <= mslice.L1) * unit
                    exit_target = (mslice.high >= mslice.H1) * mslice.L2 + (
                        mslice.low <= mslice.L1) * mslice.H2
                    new_pos = pos_class([mslice.contract], [1], pos,
                                        mslice.close, exit_target, 1,
                                        **pos_args)
                    tradeid += 1
                    new_pos.entry_tradeid = tradeid
                    new_pos.open(mslice.close + misc.sign(pos) * offset, dd)
                    curr_pos.append(new_pos)
                    mdf.ix[dd, 'cost'] -= abs(pos) * (offset +
                                                      mslice.close * tcost)
            mdf.ix[dd, 'pos'] = pos
    return (mdf, closed_trades)
コード例 #30
0
def layer_sim(mdf, config):
    tcost = config['trans_cost']
    unit = config['unit']
    offset = config['offset']
    pos_class = config['pos_class']
    pos_args = config['pos_args']
    freq = config['freq']
    signal_func = config['signal_func']
    signal_args = config['signal_args']
    signal_level = config['signal_level']
    close_daily = config['close_daily']
    for idx, (f, sfunc, sargs, slvl) in enumerate(
            zip(freq, signal_func, signal_args, signal_level)):
        df = dh.conv_ohlc_freq(mdf, f, extra_cols=['contract'])
        if idx == 0:
            xdf = df
        farg = tuple(sargs)
        func = eval(sfunc[0])
        sigout = func(df, *farg)
        sig_field = sfunc[1] % farg
        signal = sigout[sig_field]
        long_lvl = slvl[0] + slvl[1]
        short_lvl = slvl[0] - slvl[1]
        if idx > 0:
            long_ind = (signal > long_lvl)
            short_ind = (signal < short_lvl)
        else:
            long_ind = (signal > long_lvl) & (signal.shift(1) <= long_lvl)
            short_ind = (signal < short_lvl) & (signal.shift(1) >= short_lvl)
        xdata = pd.concat([signal, long_ind, short_ind],
                          axis=1,
                          keys=[
                              'signal' + str(idx), 'long_ind' + str(idx),
                              'short_ind' + str(idx)
                          ]).shift(1)
        #print xdata
        xdf = xdf.join(xdata, how='left').fillna(method='ffill')
    xdf['close_ind'] = np.isnan(xdf['close'].shift(-1))
    if close_daily:
        daily_end = (xdf['date'] != xdf['date'].shift(-1))
        xdf['close_ind'] = xdf['close_ind'] | daily_end
    xdf['pos'] = 0
    xdf['cost'] = 0
    xdf['traded_price'] = xdf.open
    curr_pos = []
    closed_trades = []
    tradeid = 0
    for idx, dd in enumerate(xdf.index):
        mslice = xdf.ix[dd]
        if len(curr_pos) == 0:
            pos = 0
        else:
            pos = curr_pos[0].pos
        signal_indlist = [
            np.isnan(getattr(mslice, 'signal' + str(i)))
            for i in range(len(freq))
        ]
        long_indlist = [
            getattr(mslice, 'long_ind' + str(i)) for i in range(len(freq))
        ]
        short_indlist = [
            getattr(mslice, 'short_ind' + str(i)) for i in range(len(freq))
        ]
        if True in signal_indlist:
            continue
        if mslice.close_ind:
            if pos != 0:
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(
                    dd, 'cost',
                    xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open - misc.sign(pos) * offset)
                pos = 0
        else:
            if (pos != 0):
                direction = 0
                long_ind = (True in long_indlist)
                short_ind = (True in short_indlist)
                if ((pos < 0) and long_ind) or ((pos > 0) and short_ind):
                    curr_pos[0].close(mslice.open - misc.sign(pos) * offset,
                                      dd)
                    tradeid += 1
                    curr_pos[0].exit_tradeid = tradeid
                    closed_trades.append(curr_pos[0])
                    curr_pos = []
                    xdf.set_value(
                        dd, 'cost',
                        xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                    xdf.set_value(dd, 'traded_price',
                                  mslice.open - misc.sign(pos) * offset)
                    pos = 0
            long_ind = (False not in long_indlist)
            short_ind = (False not in short_indlist)
            if (long_ind or short_ind) and (pos == 0):
                target_pos = long_ind * unit - short_ind * unit
                new_pos = pos_class([mslice.contract], [1], target_pos,
                                    mslice.open, mslice.open, **pos_args)
                tradeid += 1
                new_pos.entry_tradeid = tradeid
                new_pos.open(mslice.open + misc.sign(target_pos) * offset, dd)
                curr_pos.append(new_pos)
                #print dd, target_pos, len(curr_pos), curr_pos[0].pos, curr_pos #[getattr(mslice, 'long_ind' + str(i)) for i in range(len(freq))]
                pos = target_pos
                xdf.set_value(
                    dd, 'cost', xdf.at[dd, 'cost'] - abs(target_pos) *
                    (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open + misc.sign(target_pos) * offset)
        xdf.set_value(dd, 'pos', pos)
    return (xdf, closed_trades)
コード例 #31
0
def bband_chan_sim(mdf, config):
    offset = config['offset']
    pos_class = config['pos_class']
    pos_args = config['pos_args']
    pos_update = config.get('pos_update', False)
    stoploss = config.get('stoploss', 0.0)
    param = config['param']
    bar_func = config.get('bar_conv_func', 'dh.bar_conv_func2')
    bar_func = eval(bar_func)
    std_func = eval(config['std_func'])
    ma_func = eval(config['ma_func'])
    #tick_base = config['tick_base']
    close_daily = config['close_daily']
    win = param[0]
    k = param[1]
    chan = param[2]
    stop_ratio = config.get('exit_stop', 0.0)
    k_e = k * stop_ratio
    if chan > 0:
        chan_func = config['chan_func']
    tcost = config['trans_cost']
    unit = config['unit']
    freq = config['freq']
    xdf = dh.conv_ohlc_freq(mdf,
                            freq,
                            extra_cols=['contract'],
                            bar_func=bar_func)
    xdf['boll_ma'] = ma_func(xdf, win).shift(1)
    xdf['boll_std'] = std_func(xdf, win).shift(1)
    xdf['upbnd'] = xdf['boll_ma'] + xdf['boll_std'] * k
    xdf['lowbnd'] = xdf['boll_ma'] - xdf['boll_std'] * k
    xdf['up_exit'] = xdf['boll_ma'] + xdf['boll_std'] * k_e
    xdf['dn_exit'] = xdf['boll_ma'] - xdf['boll_std'] * k_e
    if chan > 0:
        xdf['chan_h'] = eval(chan_func['high']['func'])(
            xdf, chan, **chan_func['high']['args']).shift(2)
        xdf['chan_l'] = eval(chan_func['low']['func'])(
            xdf, chan, **chan_func['low']['args']).shift(2)
    else:
        xdf['chan_h'] = -10000000
        xdf['chan_l'] = 10000000
    xdf['high_band'] = xdf[['chan_h', 'upbnd']].max(axis=1)
    xdf['low_band'] = xdf[['chan_l', 'lowbnd']].min(axis=1)
    xdf['prev_close'] = xdf['close'].shift(1)
    xdf['close_ind'] = np.isnan(xdf['close'].shift(-1))
    if close_daily:
        daily_end = (xdf['date'] != xdf['date'].shift(-1))
        xdf['close_ind'] = xdf['close_ind'] | daily_end
    long_signal = pd.Series(np.nan, index=xdf.index)
    long_signal[(xdf['open'] >= xdf['high_band'])
                & (xdf['boll_ma'].notnull())] = 1
    long_signal[(xdf['open'] <= xdf['dn_exit'])
                & (xdf['boll_ma'].notnull())] = 0
    long_signal[xdf['close_ind']] = 0
    long_signal = long_signal.fillna(method='ffill').fillna(0)
    short_signal = pd.Series(np.nan, index=xdf.index)
    short_signal[(xdf['open'] <= xdf['low_band'])
                 & (xdf['boll_ma'].notnull())] = -1
    short_signal[(xdf['open'] >= xdf['up_exit'])
                 & (xdf['boll_ma'].notnull())] = 0
    short_signal[xdf['close_ind']] = 0
    short_signal = short_signal.fillna(method='ffill').fillna(0)
    if len(xdf[(long_signal > 0) & (short_signal < 0)]) > 0:
        print xdf[(long_signal > 0) & (short_signal < 0)]
        print "something wrong with the position as long signal and short signal happen the same time"
    xdf['pos'] = long_signal + short_signal
    xdf['cost'] = abs(xdf['pos'] - xdf['pos'].shift(1)) * (offset +
                                                           xdf['open'] * tcost)
    xdf['cost'] = xdf['cost'].fillna(0.0)
    xdf['traded_price'] = xdf.open + (xdf['pos'] -
                                      xdf['pos'].shift(1)) * offset
    closed_trades = backtest.simdf_to_trades1(xdf, slippage=offset)
    return (xdf, closed_trades)
コード例 #32
0
ファイル: bktest_chanbreak.py プロジェクト: LUS8806/pyktrader
def chanbreak_sim( mdf, config):
    freq = config['freq']
    str_freq = str(freq) + 'Min'
    xdf = dh.conv_ohlc_freq(mdf, str_freq)
    start_equity = config['capital']
    tcost = config['trans_cost']
    unit = config['unit']
    #k = config['scaler']
    marginrate = config['marginrate']
    offset = config['offset']
    win = config['win']
    pos_class = config['pos_class']
    pos_args  = config['pos_args']
    chan_func = config['channel_func']
    upper_chan_func = chan_func[0]
    lower_chan_func = chan_func[1]
    entry_chan = win[0]    
    exit_chan =  win[1]
    xdf['H1'] = upper_chan_func(xdf, entry_chan)
    xdf['L1'] = lower_chan_func(xdf, entry_chan)
    xdf['H2'] = upper_chan_func(xdf, exit_chan)
    xdf['L2'] = lower_chan_func(xdf, exit_chan)
    xdf['ATR'] = dh.ATR(xdf, entry_chan)
    xdata = pd.concat([xdf['H1'], xdf['L1'], xdf['H2'], xdf['L2'], xdf['ATR'], xdf['high'], xdf['low']], \
                      axis=1, keys=['H1', 'L1', 'H2', 'L2', 'ATR', 'xhigh', 'xlow']).shift(1)
    ll = mdf.shape[0]
    mdf = mdf.join(xdata, how = 'left').fillna(method='ffill')
    mdf['pos'] = pd.Series([0]*ll, index = mdf.index)
    mdf['cost'] = pd.Series([0]*ll, index = mdf.index)
    curr_pos = []
    closed_trades = []
    end_d = mdf.index[-1].date()
    tradeid = 0
    x_idx = 0
    max_idx = len(xdf.index)
    for idx, dd in enumerate(mdf.index):
        mslice = mdf.ix[dd]
        min_id = mslice.min_id
        cnt_id = count_min_id(dd)
        if len(curr_pos) == 0:
            pos = 0
        else:
            pos = curr_pos[0].pos
        mdf.ix[dd, 'pos'] = pos
        #if np.isnan(mslice.ATR):
        #    continue
        if (min_id >=config['exit_min']):
            if (pos!=0) and (dd.date() == end_d):
                curr_pos[0].close(mslice.close - misc.sign(pos) * offset , dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                pos = 0
                mdf.ix[dd, 'cost'] -=  abs(pos) * (offset + mslice.close*tcost) 
            continue
        else:
            if (pos !=0):
                if (cnt_id % freq) == 0:
                    curr_pos[0].update_bar(mslice)
                check_price = (pos>0) * mslice.low + (pos<0) * mslice.high
                if curr_pos[0].check_exit(check_price, 0):
                    curr_pos[0].close(mslice.close - misc.sign(pos) * offset, dd)
                    tradeid += 1
                    curr_pos[0].exit_tradeid = tradeid
                    closed_trades.append(curr_pos[0])
                    pos = 0
                    curr_pos = []                    
            if ((mslice.high >= mslice.H2) and (pos<0)) or ((mslice.low <= mslice.L2) and (pos>0)):
                curr_pos[0].close(mslice.close - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                mdf.ix[dd, 'cost'] -= abs(pos) * (offset + mslice.close*tcost)
                pos = 0
            if ((mslice.high >= mslice.H1) and (pos<=0)) or ((mslice.low <= mslice.L1) and (pos>=0)):
                if (pos ==0 ):
                    pos = (mslice.high >= mslice.H1) * unit -(mslice.low <= mslice.L1) * unit
                    exit_target = (mslice.high >= mslice.H1) * mslice.L2 + (mslice.low <= mslice.L1) * mslice.H2
                    new_pos = pos_class([mslice.contract], [1], pos, mslice.close, exit_target, 1, **pos_args)
                    tradeid += 1
                    new_pos.entry_tradeid = tradeid
                    new_pos.open(mslice.close + misc.sign(pos)*offset, dd)
                    curr_pos.append(new_pos)
                    mdf.ix[dd, 'cost'] -=  abs(pos) * (offset + mslice.close*tcost)
            mdf.ix[dd, 'pos'] = pos
    (res_pnl, ts) = backtest.get_pnl_stats( mdf, start_equity, marginrate, 'm')
    res_trade = backtest.get_trade_stats( closed_trades )
    res = dict( res_pnl.items() + res_trade.items())
    return (res, closed_trades, ts)
コード例 #33
0
def bband_chan_sim(mdf, config):
    offset = config['offset']
    pos_class = config['pos_class']
    pos_args = config['pos_args']
    pos_update = config.get('pos_update', False)
    stoploss = config.get('stoploss', 0.0)
    param = config['param']
    bar_func = eval(config['bar_conv_func'])
    std_func = eval(config['std_func'])
    #tick_base = config['tick_base']
    close_daily = config['close_daily']
    win = param[0]
    k = param[1]
    chan = param[2]
    stop_ratio = config.get('exit_stop', 0.0)
    k_e = k * stop_ratio
    if chan > 0:
        chan_func = config['chan_func']
    tcost = config['trans_cost']
    unit = config['unit']
    freq = config['freq']
    xdf = dh.conv_ohlc_freq(mdf,
                            freq,
                            extra_cols=['contract'],
                            bar_func=bar_func)
    xdf['boll_ma'] = dh.MA(xdf, win).shift(1)
    xdf['boll_std'] = std_func(xdf, win).shift(1)
    xdf['upbnd'] = xdf['boll_ma'] + xdf['boll_std'] * k
    xdf['lowbnd'] = xdf['boll_ma'] - xdf['boll_std'] * k
    xdf['up_exit'] = xdf['boll_ma'] + xdf['boll_std'] * k_e
    xdf['dn_exit'] = xdf['boll_ma'] - xdf['boll_std'] * k_e
    if chan > 0:
        xdf['chan_h'] = eval(chan_func['high']['func'])(
            xdf, chan, **chan_func['high']['args']).shift(2)
        xdf['chan_l'] = eval(chan_func['low']['func'])(
            xdf, chan, **chan_func['low']['args']).shift(2)
    else:
        xdf['chan_h'] = 0
        xdf['chan_l'] = 10000000
    xdf['high_band'] = xdf[['chan_h', 'upbnd']].max(axis=1)
    xdf['low_band'] = xdf[['chan_l', 'lowbnd']].min(axis=1)
    xdf['prev_close'] = xdf['close'].shift(1)
    xdf['close_ind'] = np.isnan(xdf['close'].shift(-1))
    if close_daily:
        daily_end = (xdf['date'] != xdf['date'].shift(-1))
        xdf['close_ind'] = xdf['close_ind'] | daily_end
    ll = xdf.shape[0]
    xdf['pos'] = 0
    xdf['cost'] = 0
    xdf['traded_price'] = xdf.open
    curr_pos = []
    closed_trades = []
    tradeid = 0
    for idx, dd in enumerate(xdf.index):
        mslice = xdf.loc[dd]
        if len(curr_pos) == 0:
            pos = 0
        else:
            pos = curr_pos[0].pos
        xdf.set_value(dd, 'pos', pos)
        if np.isnan(mslice.boll_ma) or np.isnan(mslice.chan_h):
            continue
        if mslice.close_ind:
            if pos != 0:
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(
                    dd, 'cost',
                    xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open - misc.sign(pos) * offset)
                pos = 0
        else:
            if ((mslice.open > mslice.up_exit) and
                (pos < 0)) or ((mslice.open < mslice.dn_exit) and (pos > 0)):
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(
                    dd, 'cost',
                    xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open - misc.sign(pos) * offset)
                pos = 0
            if ((mslice.open >= mslice.high_band) or
                (mslice.open <= mslice.low_band)) and (pos == 0):
                target_pos = (mslice.open >= mslice.high_band) * unit - (
                    mslice.open <= mslice.low_band) * unit
                new_pos = pos_class([mslice.contract], [1], target_pos,
                                    mslice.open, mslice.open, **pos_args)
                tradeid += 1
                new_pos.entry_tradeid = tradeid
                new_pos.open(mslice.open + misc.sign(target_pos) * offset, dd)
                curr_pos.append(new_pos)
                pos = target_pos
                xdf.set_value(
                    dd, 'cost', xdf.at[dd, 'cost'] - abs(target_pos) *
                    (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open + misc.sign(target_pos) * offset)
        if pos_update and pos != 0:
            if curr_pos[0].check_exit(mslice.open, stoploss * mslice.boll_std):
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(
                    dd, 'cost',
                    xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open - misc.sign(pos) * offset)
                pos = 0
            else:
                curr_pos[0].update_bar(mslice)
        xdf.set_value(dd, 'pos', pos)
    return (xdf, closed_trades)
コード例 #34
0
ファイル: bkvec_ma_ribbon.py プロジェクト: zixys/pyktrader2
def MA_sim(mdf, config):
    offset = config['offset']
    ma_list = config['ma_list']
    param = config['param']
    corr_entry = param[0]
    corr_exit = param[1]
    pval_entry = param[2]
    pval_exit = param[3]
    if len(param) >= 5:
        channel = param[4]
    else:
        channel = 0
    if channel == 0:
        use_chan = False
    else:
        use_chan = True
    close_daily = config['close_daily']
    tcost = config['trans_cost']
    freq = config['freq']
    if int(freq[:-3]) == 1:
        xdf = mdf
    else:
        xdf = dh.conv_ohlc_freq(mdf, freq, extra_cols=['contract'])
    if use_chan:
        xdf['chan_high'] = eval(config['channel_func'][0])(
            xdf, channel, **config['channel_args'][0]).shift(2)
        xdf['chan_low'] = eval(config['channel_func'][1])(
            xdf, channel, **config['channel_args'][1]).shift(2)
    else:
        xdf['chan_high'] = pd.Series(index=xdf.index)
        xdf['chan_low'] = pd.Series(index=xdf.index)
    ma_ribbon = dh.MA_RIBBON(xdf, ma_list)
    ribbon_corr = ma_ribbon["MARIBBON_CORR"].shift(1)
    ribbon_pval = ma_ribbon["MARIBBON_PVAL"].shift(1)
    ribbon_dist = ma_ribbon["MARIBBON_DIST"].shift(1)
    xdf['prev_close'] = xdf['close'].shift(1)
    xdf['close_ind'] = np.isnan(xdf['close'].shift(-1))
    if close_daily:
        daily_end = (xdf['date'] != xdf['date'].shift(-1))
        xdf['close_ind'] = xdf['close_ind'] | daily_end
    long_signal = pd.Series(np.nan, index=xdf.index)
    long_flag = (ribbon_corr >= corr_entry) & (ribbon_pval < pval_entry)
    if use_chan:
        long_flag = long_flag & (xdf['open'] >= xdf['chan_high'])
    long_signal[long_flag] = 1
    long_signal[(ribbon_corr < corr_exit) | (ribbon_pval > pval_exit)] = 0
    long_signal[xdf['close_ind']] = 0
    long_signal = long_signal.fillna(method='ffill').fillna(0)
    short_signal = pd.Series(np.nan, index=xdf.index)
    short_flag = (ribbon_corr <= -corr_entry) & (ribbon_pval < pval_entry)
    if use_chan:
        short_flag = short_flag & (xdf['open'] <= xdf['chan_low'])
    short_signal[short_flag] = -1
    short_signal[(ribbon_corr > -corr_exit) | (ribbon_pval > pval_exit)] = 0
    short_signal[xdf['close_ind']] = 0
    short_signal = short_signal.fillna(method='ffill').fillna(0)
    if len(xdf[(long_signal > 0) & (short_signal < 0)]) > 0:
        print xdf[(long_signal > 0) & (short_signal < 0)]
        print "something wrong with the position as long signal and short signal happen the same time"
    xdf['pos'] = long_signal + short_signal
    xdf['cost'] = abs(xdf['pos'] - xdf['pos'].shift(1)) * (offset +
                                                           xdf['open'] * tcost)
    xdf['cost'] = xdf['cost'].fillna(0.0)
    xdf['traded_price'] = xdf.open + (xdf['pos'] -
                                      xdf['pos'].shift(1)) * offset
    closed_trades = backtest.simdf_to_trades1(xdf, slippage=offset)
    return (xdf, closed_trades)
コード例 #35
0
def bband_chan_sim( mdf, config):
    start_equity = config['capital']
    marginrate = config['marginrate']
    offset = config['offset']
    pos_class = config['pos_class']
    pos_args  = config['pos_args']
    param = config['param']
    #tick_base = config['tick_base']
    close_daily = config['close_daily']
    win = param[0]
    k = param[1]
    chan = param[2]
    if chan > 0:
        chan_func = config['chan_func']
    tcost = config['trans_cost']
    filter_func = config['filter_func']['func']
    filter_args = config['filter_func']['args']
    filter_param = config['filter_func']['param']
    unit = config['unit']
    freq = config['freq']
    xdf = dh.conv_ohlc_freq(mdf, freq)
    xdf['boll_ma'] = dh.MA(xdf, win).shift(1)
    boll_std = dh.STDEV(xdf, win).shift(1)
    xdf['upbnd'] = xdf['boll_ma'] + boll_std * k
    xdf['lowbnd'] = xdf['boll_ma'] - boll_std * k
    if chan > 0:
        xdf['chan_h'] = eval(chan_func['high']['func'])(xdf, chan, **chan_func['high']['args']).shift(1)
        xdf['chan_l'] = eval(chan_func['low']['func'])(xdf, chan, **chan_func['low']['args']).shift(1)
    else:
        xdf['chan_h'] = 0
        xdf['chan_l'] = 10000000
    xdf['high_band'] = xdf[['chan_h', 'upbnd']].max(axis=1)
    xdf['low_band'] = xdf[['chan_l', 'lowbnd']].min(axis=1)
    xdf['filter'] = eval(filter_func)(xdf, filter_param[0], **filter_args)
    xdf['filter_ma'] = pd.rolling_mean(xdf['filter'], filter_param[1])
    xdf['filter_ind'] = xdf['filter_ma'] >= filter_param[2]
    xdf['prev_close'] = xdf['close'].shift(1)
    xdf['close_ind'] = np.isnan(xdf['close'].shift(-1))
    if close_daily:
        daily_end = (xdf['date']!=xdf['date'].shift(-1))
        xdf['close_ind'] = xdf['close_ind'] | daily_end
    ll = xdf.shape[0]
    xdf['pos'] = 0
    xdf['cost'] = 0
    xdf['traded_price'] = xdf.open
    curr_pos = []
    closed_trades = []
    tradeid = 0
    for idx, dd in enumerate(xdf.index):
        mslice = xdf.loc[dd]
        if len(curr_pos) == 0:
            pos = 0
        else:
            pos = curr_pos[0].pos
        xdf.set_value(dd, 'pos', pos)
        if np.isnan(mslice.boll_ma) or np.isnan(mslice.chan_h):
            continue
        if mslice.close_ind:
            if pos!=0:
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(dd, 'cost', xdf.at[dd, 'cost'] - abs(pos) * ( mslice.open * tcost))
                xdf.set_value(dd, 'traded_price', mslice.open - misc.sign(pos) * offset)
                pos = 0
        else:
            if ((mslice.open > mslice.boll_ma) and (pos<0)) or ((mslice.open < mslice.boll_ma) and (pos>0)):
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(dd, 'cost', xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price', mslice.open - misc.sign(pos) * offset)
                pos = 0
            if ((mslice.open >= mslice.high_band) or (mslice.open <= mslice.low_band)) and (pos==0):
                target_pos = ( mslice.open >= mslice.high_band) * unit - (mslice.open <= mslice.low_band) * unit
                new_pos = pos_class([mslice.contract], [1], target_pos, mslice.open, mslice.open, **pos_args)
                tradeid += 1
                new_pos.entry_tradeid = tradeid
                new_pos.open(mslice.open + misc.sign(target_pos)*offset, dd)
                curr_pos.append(new_pos)
                pos = target_pos
                xdf.set_value(dd, 'cost', xdf.at[dd, 'cost'] -  abs(target_pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price', mslice.open + misc.sign(target_pos)*offset)
        xdf.set_value(dd, 'pos', pos)
    return (xdf, closed_trades)
コード例 #36
0
def psar_chan_sim( mdf, config):
    marginrate = config['marginrate']
    offset = config['offset']
    tcost = config['trans_cost']
    unit = config['unit']
    stoploss = config['stoploss']
    bar_func = config.get('bar_conv_func', 'dh.bar_conv_func2')
    param = config['param']
    freq = config['freq']
    use_HL = config.get('use_HL',False)
    use_chan = config['use_chan']    
    chan_func = config['chan_func']
    chan_args = config['chan_args']
    chan = param[0]
    sar_param = param[1]
    pos_update = config.get('pos_update', False)
    pos_class = config['pos_class']
    pos_args  = config['pos_args']    
    close_daily = config['close_daily']
    
    xdf = dh.conv_ohlc_freq(mdf, freq, extra_cols = ['contract'], bar_func = eval(bar_func))
    if use_chan:
        xdf['chanH'] = eval(chan_func[0])(xdf, chan, **chan_args[0]).shift(1)
        xdf['chanL'] = eval(chan_func[1])(xdf, chan, **chan_args[1]).shift(1)
    else:
        xdf['chanH'] = 0
        xdf['chanL'] = 10000000
    psar_data = dh.PSAR(xdf, **sar_param)
    xdf['psar_dir'] = psar_data['PSAR_DIR'].shift(1)
    xdf['psar_val'] = psar_data['PSAR_VAL'].shift(1)
    xdf['prev_high'] = xdf['high'].shift(1)
    xdf['prev_low'] = xdf['low'].shift(1)
    xdf['prev_close'] = xdf['close'].shift(1)
    xdf['close_ind'] = np.isnan(xdf['close'].shift(-1))
    if close_daily:
        daily_end = (xdf['date']!=xdf['date'].shift(-1))
        xdf['close_ind'] = xdf['close_ind'] | daily_end    
    xdf['pos'] = 0
    xdf['cost'] = 0
    xdf['traded_price'] = xdf.open
    curr_pos = []
    closed_trades = []
    tradeid = 0
    for idx, dd in enumerate(xdf.index):
        mslice = xdf.loc[dd]
        if len(curr_pos) == 0:
            pos = 0
        else:
            pos = curr_pos[0].pos
        xdf.set_value(dd, 'pos', pos)
        if np.isnan(mslice.chanH) or np.isnan(mslice.chanL):
            continue
        if use_HL:
            buy_trig  = (mslice.prev_high >= mslice.chanH) and (mslice.psar_dir > 0)
            sell_trig = (mslice.prev_low <= mslice.chanL) and (mslice.psar_dir < 0)
            long_close  = (mslice.prev_low <= mslice.chanL) or (mslice.psar_dir < 0)
            short_close = (mslice.prev_high >= mslice.chanH) or (mslice.psar_dir > 0)
        else:
            buy_trig  = (mslice.open >= mslice.chanH) and (mslice.psar_dir > 0)
            sell_trig = (mslice.open <= mslice.chanL) and (mslice.psar_dir < 0)
            long_close  = (mslice.open <= mslice.chanL) or (mslice.psar_dir < 0)
            short_close = (mslice.open >= mslice.chanH) or (mslice.psar_dir > 0)
        if mslice.close_ind:
            if (pos != 0):
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset , dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(dd, 'cost', xdf.at[dd, 'cost'] - abs(pos) * ( mslice.open * tcost))
                xdf.set_value(dd, 'traded_price', mslice.open - misc.sign(pos) * offset)
                pos = 0
        else:
            if (short_close and (pos > 0)) or (long_close and (pos < 0)):
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(dd, 'cost', xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price', mslice.open - misc.sign(pos) * offset)
                pos = 0       
            if (buy_trig or sell_trig) and (pos==0):
                target_pos = buy_trig * unit - sell_trig * unit
                new_pos = pos_class([mslice.contract], [1], target_pos, mslice.open, mslice.open, **pos_args)
                tradeid += 1
                new_pos.entry_tradeid = tradeid
                new_pos.open(mslice.open + misc.sign(target_pos)*offset, dd)
                curr_pos.append(new_pos)
                pos = target_pos
                xdf.set_value(dd, 'cost', xdf.at[dd, 'cost'] -  abs(target_pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price', mslice.open + misc.sign(target_pos)*offset)
        #if pos_update and pos != 0:
        #    if curr_pos[0].check_exit(mslice.open, stoploss * mslice.boll_std):
        #        curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
        #        tradeid += 1
        #        curr_pos[0].exit_tradeid = tradeid
        #        closed_trades.append(curr_pos[0])
        #        curr_pos = []
        #        xdf.set_value(dd, 'cost', xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
        #        xdf.set_value(dd, 'traded_price', mslice.open - misc.sign(pos) * offset)
        #        pos = 0
        #    else:
        #        curr_pos[0].update_bar(mslice)                
        xdf.set_value(dd, 'pos', pos)
    return (xdf, closed_trades)
コード例 #37
0
def chanbreak_sim( mdf, ddf, config):
    freq = config['freq']
    str_freq = str(freq) + 'Min'
    xdf = dh.conv_ohlc_freq(mdf, str_freq)
    start_equity = config['capital']
    tcost = config['trans_cost']
    unit = config['unit']
    k = config['scaler']
    marginrate = config['marginrate']
    offset = config['offset']
    win = config['win']
    chan_func = config['channel_func']
    upper_chan_func = chan_func[0]
    lower_chan_func = chan_func[1]
    entry_chan = win    
    exit_chan = int(entry_chan/k[1])
    xdf['H1'] = upper_chan_func(xdf, entry_chan).shift(1)
    xdf['L1'] = lower_chan_func(xdf, entry_chan).shift(1)
    xdf['H2'] = upper_chan_func(xdf, exit_chan).shift(1)
    xdf['L2'] = lower_chan_func(xdf, exit_chan).shift(1)
    ddf['ATR'] = dh.ATR(ddf, entry_chan)
    ll = mdf.shape[0]
    mdf['pos'] = pd.Series([0]*ll, index = mdf.index)
    mdf['cost'] = pd.Series([0]*ll, index = mdf.index)
    curr_pos = []
    closed_trades = []
    end_d = mdf.index[-1].date()
    tradeid = 0
    x_idx = 0
    max_idx = len(xdf.index)
    for idx, dd in enumerate(mdf.index):
        mslice = mdf.ix[dd]
        min_id = agent.get_min_id(dd)
        d = dd.date()
        dslice = ddf.ix[d]
        while (x_idx<max_idx-1) and (xdf.index[x_idx + 1] < dd):
            x_idx += 1
        xslice = xdf.iloc[x_idx]
        if len(curr_pos) == 0:
            pos = 0
        else:
            pos = curr_pos[0].pos
        mdf.ix[dd, 'pos'] = pos
        if np.isnan(dslice.ATR):
            continue
        if (min_id >=config['exit_min']):
            if (pos!=0) and (d == end_d):
                curr_pos[0].close(mslice.close - misc.sign(pos) * offset , dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                mdf.ix[dd, 'cost'] -=  abs(pos) * (offset + mslice.close*tcost) 
            continue
        else:
            if (pos !=0):
                curr_pos[0].trail_update(mslice.close)
                if curr_pos[0].trail_check(mslice.close, dslice.ATR*k[0]):
                    curr_pos[0].close(mslice.close - misc.sign(pos) * offset, dd)
                    tradeid += 1
                    curr_pos[0].exit_tradeid = tradeid
                    closed_trades.append(curr_pos[0])
                    pos = 0
                    curr_pos = []                    
            if ((mslice.close >= xslice.H2) and (pos<0)) or ((mslice.close <= xslice.L2) and (pos>0)):
                curr_pos[0].close(mslice.close - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                mdf.ix[dd, 'cost'] -= abs(pos) * (offset + mslice.close*tcost)
                pos = 0
            if ((mslice.close>=xslice.H1) and (pos<=0)) or ((mslice.close <= xslice.L1) and (pos>=0)):
                if (pos ==0 ):
                    target_pos = (mslice.close>=xslice.H1) * unit -(mslice.close<=xslice.L1) * unit
                    new_pos = strat.TradePos([mslice.contract], [1], target_pos, mslice.close, mslice.close)
                    tradeid += 1
                    new_pos.entry_tradeid = tradeid
                    new_pos.open(mslice.close + misc.sign(target_pos)*offset, dd)
                    curr_pos.append(new_pos)
                    mdf.ix[dd, 'cost'] -=  abs(target_pos) * (offset + mslice.close*tcost)
                    mdf.ix[dd, 'pos'] = pos
                else:
                    print "something wrong with position=%s, close =%s, upBnd=%s, lowBnd=%s" % ( pos, mslice.close, xslice.H1, xslice.L1)
            
    (res_pnl, ts) = backtest.get_pnl_stats( mdf, start_equity, marginrate, 'm')
    res_trade = backtest.get_trade_stats( closed_trades )
    res = dict( res_pnl.items() + res_trade.items())
    return (res, closed_trades, ts)
コード例 #38
0
def asctrend_sim(mdf, config):
    offset = config['offset']
    tcost = config['trans_cost']
    unit = config['unit']
    stoploss = config['stoploss']
    bar_func = config.get('bar_conv_func', 'dh.bar_conv_func2')
    param = config['param']
    freq = config['freq']
    pos_update = config.get('pos_update', False)
    pos_class = config['pos_class']
    pos_args = config['pos_args']
    close_daily = config['close_daily']
    xdf = dh.conv_ohlc_freq(mdf,
                            freq,
                            extra_cols=['contract'],
                            bar_func=eval(bar_func))
    asc_period = param[0]
    asc_risk = param[1]
    rsi_sig = config['rsi_sig']
    asctrend = dh.ASCTREND(xdf, asc_period, risk=asc_risk)
    xdf['asc_signal'] = asctrend["ASCSIG_%s" % str(asc_period)].shift(1)
    xdf['asc_stop'] = asctrend["ASCSTOP_%s" % str(asc_period)].shift(1)
    rsi_period = param[2]
    rsi_offset = param[3]
    rsi_buy = 50 + rsi_offset
    rsi_sell = 50 - rsi_offset
    rsi = dh.RSI(xdf, n=rsi_period)
    rsi_signal = pd.Series(0, index=rsi.index)
    if rsi_sig:
        rsi_signal[(rsi >= rsi_buy) & (rsi.shift(1) < rsi_buy)] = 1
        rsi_signal[(rsi <= rsi_sell) & (rsi.shift(1) > rsi_sell)] = -1
    else:
        rsi_signal[(rsi >= rsi_buy)] = 1
        rsi_signal[(rsi <= rsi_sell)] = -1
    xdf['rsi_signal'] = rsi_signal.shift(1)
    if len(param) > 4:
        sar_step = param[4]
        sar_max = param[5]
    else:
        sar_step = 0.005
        sar_max = 0.02
    sar = dh.SAR(xdf, incr=sar_step, maxaf=sar_max)
    sar_signal = pd.Series(0, index=sar.index)
    sar_signal[(sar < xdf['close'])] = 1
    sar_signal[(sar > xdf['close'])] = -1
    xdf['sar_signal'] = sar_signal.shift(1)
    xdf['sar_stop'] = sar.shift(1)
    xdf['close_ind'] = np.isnan(xdf['close'].shift(-1))
    if close_daily:
        daily_end = (xdf['date'] != xdf['date'].shift(-1))
        xdf['close_ind'] = xdf['close_ind'] | daily_end
    xdf['pos'] = 0
    xdf['cost'] = 0
    xdf['traded_price'] = xdf.open
    curr_pos = []
    closed_trades = []
    tradeid = 0
    for idx, dd in enumerate(xdf.index):
        mslice = xdf.loc[dd]
        if len(curr_pos) == 0:
            pos = 0
        else:
            pos = curr_pos[0].pos
        xdf.set_value(dd, 'pos', pos)
        if np.isnan(mslice.sar_stop) or np.isnan(mslice.asc_stop):
            continue
        buy_trig = (mslice.asc_signal > 0) and (mslice.rsi_signal >
                                                0) and (mslice.sar_signal > 0)
        sell_trig = (mslice.asc_signal < 0) and (mslice.rsi_signal <
                                                 0) and (mslice.sar_signal < 0)
        buy_close = (mslice.asc_signal < 0) or (mslice.rsi_signal < 0)
        sell_close = (mslice.asc_signal > 0) or (mslice.rsi_signal > 0)
        if mslice.close_ind:
            if (pos != 0):
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(
                    dd, 'cost',
                    xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open - misc.sign(pos) * offset)
                pos = 0
        else:
            if pos_update and pos != 0:
                curr_pos[0].update_price(mslice.asc_stop)
                pos_close = curr_pos[0].check_exit(mslice.open, 0)
            else:
                pos_close = False
            if (buy_close and (pos > 0)) or (sell_close and
                                             (pos < 0)) or pos_close:
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(
                    dd, 'cost',
                    xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open - misc.sign(pos) * offset)
                pos = 0
            if (buy_trig or sell_trig) and (pos == 0):
                target_pos = buy_trig * unit - sell_trig * unit
                new_pos = pos_class([mslice.contract], [1], target_pos,
                                    mslice.open, mslice.asc_stop, **pos_args)
                tradeid += 1
                new_pos.entry_tradeid = tradeid
                new_pos.open(mslice.open + misc.sign(target_pos) * offset, dd)
                curr_pos.append(new_pos)
                pos = target_pos
                xdf.set_value(
                    dd, 'cost', xdf.at[dd, 'cost'] - abs(target_pos) *
                    (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open + misc.sign(target_pos) * offset)
        xdf.set_value(dd, 'pos', pos)
    return (xdf, closed_trades)
コード例 #39
0
def bband_chan_sim(mdf, config):
    start_equity = config['capital']
    marginrate = config['marginrate']
    offset = config['offset']
    pos_class = config['pos_class']
    pos_args = config['pos_args']
    param = config['param']
    #tick_base = config['tick_base']
    close_daily = config['close_daily']
    win = param[0]
    k = param[1]
    chan = param[2]
    if chan > 0:
        chan_func = config['chan_func']
    tcost = config['trans_cost']
    filter_func = config['filter_func']['func']
    filter_args = config['filter_func']['args']
    filter_param = config['filter_func']['param']
    unit = config['unit']
    freq = config['freq']
    xdf = dh.conv_ohlc_freq(mdf, freq)
    xdf['boll_ma'] = dh.MA(xdf, win).shift(1)
    boll_std = dh.STDEV(xdf, win).shift(1)
    xdf['upbnd'] = xdf['boll_ma'] + boll_std * k
    xdf['lowbnd'] = xdf['boll_ma'] - boll_std * k
    if chan > 0:
        xdf['chan_h'] = eval(chan_func['high']['func'])(
            xdf, chan, **chan_func['high']['args']).shift(1)
        xdf['chan_l'] = eval(chan_func['low']['func'])(
            xdf, chan, **chan_func['low']['args']).shift(1)
    else:
        xdf['chan_h'] = 0
        xdf['chan_l'] = 10000000
    xdf['high_band'] = xdf[['chan_h', 'upbnd']].max(axis=1)
    xdf['low_band'] = xdf[['chan_l', 'lowbnd']].min(axis=1)
    xdf['filter'] = eval(filter_func)(xdf, filter_param[0], **filter_args)
    xdf['filter_ma'] = pd.rolling_mean(xdf['filter'], filter_param[1])
    xdf['filter_ind'] = xdf['filter_ma'] >= filter_param[2]
    xdf['prev_close'] = xdf['close'].shift(1)
    xdf['close_ind'] = np.isnan(xdf['close'].shift(-1))
    if close_daily:
        daily_end = (xdf['date'] != xdf['date'].shift(-1))
        xdf['close_ind'] = xdf['close_ind'] | daily_end
    ll = xdf.shape[0]
    xdf['pos'] = 0
    xdf['cost'] = 0
    xdf['traded_price'] = xdf.open
    curr_pos = []
    closed_trades = []
    tradeid = 0
    for idx, dd in enumerate(xdf.index):
        mslice = xdf.loc[dd]
        if len(curr_pos) == 0:
            pos = 0
        else:
            pos = curr_pos[0].pos
        xdf.set_value(dd, 'pos', pos)
        if np.isnan(mslice.boll_ma) or np.isnan(mslice.chan_h):
            continue
        if mslice.close_ind:
            if pos != 0:
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(
                    dd, 'cost',
                    xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open - misc.sign(pos) * offset)
                pos = 0
        else:
            if ((mslice.open > mslice.boll_ma) and
                (pos < 0)) or ((mslice.open < mslice.boll_ma) and (pos > 0)):
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(
                    dd, 'cost',
                    xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open - misc.sign(pos) * offset)
                pos = 0
            if ((mslice.open >= mslice.high_band) or
                (mslice.open <= mslice.low_band)) and (pos == 0):
                target_pos = (mslice.open >= mslice.high_band) * unit - (
                    mslice.open <= mslice.low_band) * unit
                new_pos = pos_class([mslice.contract], [1], target_pos,
                                    mslice.open, mslice.open, **pos_args)
                tradeid += 1
                new_pos.entry_tradeid = tradeid
                new_pos.open(mslice.open + misc.sign(target_pos) * offset, dd)
                curr_pos.append(new_pos)
                pos = target_pos
                xdf.set_value(
                    dd, 'cost', xdf.at[dd, 'cost'] - abs(target_pos) *
                    (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open + misc.sign(target_pos) * offset)
        xdf.set_value(dd, 'pos', pos)
    return (xdf, closed_trades)
コード例 #40
0
 def prepare_data_env(self, inst, mid_day=True):
     if self.instruments[inst].ptype == instrument.ProductType.Option:
         return
     if self.daily_data_days > 0 or mid_day:
         self.logger.debug('Updating historical daily data for %s' %
                           self.scur_day.strftime('%Y-%m-%d'))
         daily_start = workdays.workday(self.scur_day,
                                        -self.daily_data_days, CHN_Holidays)
         daily_end = self.scur_day
         self.day_data[inst] = mysqlaccess.load_daily_data_to_df(
             'fut_daily', inst, daily_start, daily_end)
         df = self.day_data[inst]
         print inst
         if len(df) > 0:
             self.instruments[inst].price = df['close'][-1]
             self.instruments[inst].last_update = 0
             self.instruments[inst].prev_close = df['close'][-1]
             for fobj in self.day_data_func[inst]:
                 ts = fobj.sfunc(df)
                 df[ts.name] = pd.Series(ts, index=df.index)
     if self.min_data_days > 0 or mid_day:
         self.logger.debug('Updating historical min data for %s' %
                           self.scur_day.strftime('%Y-%m-%d'))
         d_start = workdays.workday(self.scur_day, -self.min_data_days,
                                    CHN_Holidays)
         d_end = self.scur_day
         min_start = int(self.instruments[inst].start_tick_id / 1000)
         min_end = int(self.instruments[inst].last_tick_id / 1000) + 1
         mindata = mysqlaccess.load_min_data_to_df('fut_min',
                                                   inst,
                                                   d_start,
                                                   d_end,
                                                   minid_start=min_start,
                                                   minid_end=min_end,
                                                   database='blueshale')
         mindata = backtest.cleanup_mindata(mindata,
                                            self.instruments[inst].product)
         self.min_data[inst][1] = mindata
         if len(mindata) > 0:
             min_date = mindata.index[-1].date()
             if (len(self.day_data[inst].index)
                     == 0) or (min_date > self.day_data[inst].index[-1]):
                 ddf = data_handler.conv_ohlc_freq(mindata, 'd')
                 self.cur_day[inst]['open'] = float(ddf.open[-1])
                 self.cur_day[inst]['close'] = float(ddf.close[-1])
                 self.cur_day[inst]['high'] = float(ddf.high[-1])
                 self.cur_day[inst]['low'] = float(ddf.low[-1])
                 self.cur_day[inst]['volume'] = int(ddf.volume[-1])
                 self.cur_day[inst]['openInterest'] = int(
                     ddf.openInterest[-1])
                 self.cur_min[inst]['datetime'] = pd.datetime(
                     *mindata.index[-1].timetuple()[0:-3])
                 self.cur_min[inst]['open'] = float(mindata.ix[-1, 'open'])
                 self.cur_min[inst]['close'] = float(mindata.ix[-1,
                                                                'close'])
                 self.cur_min[inst]['high'] = float(mindata.ix[-1, 'high'])
                 self.cur_min[inst]['low'] = float(mindata.ix[-1, 'low'])
                 self.cur_min[inst]['volume'] = self.cur_day[inst]['volume']
                 self.cur_min[inst]['openInterest'] = self.cur_day[inst][
                     'openInterest']
                 self.cur_min[inst]['min_id'] = int(mindata.ix[-1,
                                                               'min_id'])
                 self.instruments[inst].price = float(mindata.ix[-1,
                                                                 'close'])
                 self.instruments[inst].last_update = 0
                 self.logger.debug('inst=%s tick data loaded for date=%s' %
                                   (inst, min_date))
             for m in self.min_data_func[inst]:
                 if m != 1:
                     self.min_data[inst][m] = data_handler.conv_ohlc_freq(
                         self.min_data[inst][1],
                         str(m) + 'min')
                 df = self.min_data[inst][m]
                 for fobj in self.min_data_func[inst][m]:
                     ts = fobj.sfunc(df)
                     df[ts.name] = pd.Series(ts, index=df.index)
コード例 #41
0
def dual_thrust_sim(mdf, config):
    (pos_class, pos_args) = config['pos_param']
    update_freq = config.get('update_freq', 0)
    ddf = config['ddf']
    close_daily = config['close_daily']
    offset = config['offset']
    k = config['param'][0]
    win = config['param'][1]
    multiplier = config['param'][2]
    f = config['param'][3]
    chan = config['chan']
    chan_func = config['chan_func']
    use_chan = config['use_chan']
    tcost = config['trans_cost']
    unit = config['unit']
    SL = config['stoploss']
    min_rng = config['min_range']
    if win == -1:
        tr = pd.concat([ddf.high - ddf.low, ddf.close - ddf.close.shift(1)],
                       join='outer',
                       axis=1).max(axis=1).shift(1)
    elif win == 0:
        tr = pd.concat(
            [(pd.rolling_max(ddf.high, 2) - pd.rolling_min(ddf.close, 2)) *
             multiplier,
             (pd.rolling_max(ddf.close, 2) - pd.rolling_min(ddf.low, 2)) *
             multiplier, ddf.high - ddf.close, ddf.close - ddf.low],
            join='outer',
            axis=1).max(axis=1).shift(1)
    else:
        tr = pd.concat([
            pd.rolling_max(ddf.high, win) - pd.rolling_min(ddf.close, win),
            pd.rolling_max(ddf.close, win) - pd.rolling_min(ddf.low, win)
        ],
                       join='outer',
                       axis=1).max(axis=1).shift(1)
    ddf['TR'] = tr
    ddf['ATR'] = dh.ATR(ddf, win)
    if use_chan:
        ddf['CH_H'] = eval(chan_func['high']['func'])(
            ddf, chan, **chan_func['high']['args']).shift(1)
        ddf['CH_L'] = eval(chan_func['low']['func'])(
            ddf, chan, **chan_func['low']['args']).shift(1)
    if update_freq > 1:
        xdf = dh.conv_ohlc_freq(mdf, str(update_freq) + 'Min')
    else:
        xdf = mdf
    xdata = pd.concat([xdf['open'], xdf['high'], xdf['low'], xdf['close']],
                      axis=1,
                      keys=['xopen', 'xhigh', 'xlow', 'xclose'])
    mdf = mdf.join(xdata, how='left').fillna(method='ffill')
    ll = mdf.shape[0]
    mdf['pos'] = 0
    mdf['cost'] = 0
    start_d = ddf.index[0]
    end_d = mdf.index[-1].date()
    prev_d = start_d - datetime.timedelta(days=1)
    curr_pos = []
    closed_trades = []
    tradeid = 0
    for idx, dd in enumerate(mdf.index):
        mslice = mdf.ix[dd]
        min_id = mslice.min_id
        d = mslice.date
        dslice = ddf.ix[d]
        if np.isnan(dslice.TR) or (mslice.close == 0):
            continue
        if use_chan and np.isnan(dslice.CH_H):
            continue
        if len(curr_pos) == 0:
            pos = 0
        else:
            pos = curr_pos[0].pos
        mdf.ix[dd, 'pos'] = pos
        d_open = dslice.open
        if (d_open <= 0):
            continue
        rng = max(min_rng * d_open, k * dslice.TR)
        if (prev_d < d):
            d_open = mslice.open
        else:
            d_open = dslice.open
        prev_d = d
        buytrig = d_open + rng
        selltrig = d_open - rng
        stoploss = SL * dslice.ATR
        tmp_args = pos_args.copy()
        if 'reset_margin' in pos_args:
            tmp_args['reset_margin'] = dslice.ATR * pos_args['reset_margin']
            stoploss = tmp_args['reset_margin'] * stoploss
        close_pos = False
        if pos != 0:
            if ((pos > 0) and
                (mslice.high < buytrig)) or ((pos < 0) and
                                             (mslice.low > selltrig)):
                close_pos = curr_pos[0].check_exit(mslice.close, stoploss)
            if (close_pos == False) and (update_freq > 0) and (
                (mslice.min_id + 1) % update_freq == 0):
                xslice = conv_xslice(mslice)
                curr_pos[0].update_bar(xslice)
            if close_pos or ((mslice.min_id >= config['exit_min']) and
                             (close_daily or (d == end_d))):
                curr_pos[0].close(mslice.close - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                mdf.ix[dd,
                       'cost'] -= abs(pos) * (offset + mslice.close * tcost)
                pos = 0
        if mslice.min_id < config['exit_min']:
            if (mslice.high >= buytrig) and (pos <= 0):
                if len(curr_pos) > 0:
                    curr_pos[0].close(mslice.close + offset, dd)
                    tradeid += 1
                    curr_pos[0].exit_tradeid = tradeid
                    closed_trades.append(curr_pos[0])
                    curr_pos = []
                    mdf.ix[dd, 'cost'] -= abs(pos) * (offset +
                                                      mslice.close * tcost)
                if (use_chan == False) or (use_chan and
                                           (mslice.high >= dslice.CH_H)):
                    new_pos = eval(pos_class)([mslice.contract], [1], unit,
                                              mslice.close + offset,
                                              mslice.close + offset,
                                              **tmp_args)
                    tradeid += 1
                    new_pos.entry_tradeid = tradeid
                    new_pos.open(mslice.close + offset, dd)
                    curr_pos.append(new_pos)
                    pos = unit
                    mdf.ix[dd, 'cost'] -= abs(pos) * (offset +
                                                      mslice.close * tcost)
            elif (mslice.low <= selltrig) and (pos >= 0):
                if len(curr_pos) > 0:
                    curr_pos[0].close(mslice.close - offset, dd)
                    tradeid += 1
                    curr_pos[0].exit_tradeid = tradeid
                    closed_trades.append(curr_pos[0])
                    curr_pos = []
                    mdf.ix[dd, 'cost'] -= abs(pos) * (offset +
                                                      mslice.close * tcost)
                if (use_chan == False) or (use_chan and
                                           (mslice.low <= dslice.CH_L)):
                    new_pos = eval(pos_class)([mslice.contract], [1], -unit,
                                              mslice.close - offset,
                                              mslice.close - offset,
                                              **tmp_args)
                    tradeid += 1
                    new_pos.entry_tradeid = tradeid
                    new_pos.open(mslice.close - offset, dd)
                    curr_pos.append(new_pos)
                    pos = -unit
                    mdf.ix[dd, 'cost'] -= abs(pos) * (offset +
                                                      mslice.close * tcost)
        mdf.ix[dd, 'pos'] = pos
    return (mdf, closed_trades)
コード例 #42
0
def psar_chan_sim(mdf, config):
    marginrate = config['marginrate']
    offset = config['offset']
    tcost = config['trans_cost']
    unit = config['unit']
    stoploss = config['stoploss']
    bar_func = config.get('bar_conv_func', 'dh.bar_conv_func2')
    param = config['param']
    freq = config['freq']
    use_HL = config.get('use_HL', False)
    use_chan = config['use_chan']
    chan_func = config['chan_func']
    chan_args = config['chan_args']
    chan = param[0]
    sar_param = param[1]
    pos_update = config.get('pos_update', False)
    pos_class = config['pos_class']
    pos_args = config['pos_args']
    close_daily = config['close_daily']

    xdf = dh.conv_ohlc_freq(mdf,
                            freq,
                            extra_cols=['contract'],
                            bar_func=eval(bar_func))
    if use_chan:
        xdf['chanH'] = eval(chan_func[0])(xdf, chan, **chan_args[0]).shift(1)
        xdf['chanL'] = eval(chan_func[1])(xdf, chan, **chan_args[1]).shift(1)
    else:
        xdf['chanH'] = 0
        xdf['chanL'] = 10000000
    psar_data = dh.PSAR(xdf, **sar_param)
    xdf['psar_dir'] = psar_data['PSAR_DIR'].shift(1)
    xdf['psar_val'] = psar_data['PSAR_VAL'].shift(1)
    xdf['prev_high'] = xdf['high'].shift(1)
    xdf['prev_low'] = xdf['low'].shift(1)
    xdf['prev_close'] = xdf['close'].shift(1)
    xdf['close_ind'] = np.isnan(xdf['close'].shift(-1))
    if close_daily:
        daily_end = (xdf['date'] != xdf['date'].shift(-1))
        xdf['close_ind'] = xdf['close_ind'] | daily_end
    xdf['pos'] = 0
    xdf['cost'] = 0
    xdf['traded_price'] = xdf.open
    curr_pos = []
    closed_trades = []
    tradeid = 0
    for idx, dd in enumerate(xdf.index):
        mslice = xdf.loc[dd]
        if len(curr_pos) == 0:
            pos = 0
        else:
            pos = curr_pos[0].pos
        xdf.set_value(dd, 'pos', pos)
        if np.isnan(mslice.chanH) or np.isnan(mslice.chanL):
            continue
        if use_HL:
            buy_trig = (mslice.prev_high >= mslice.chanH) and (mslice.psar_dir
                                                               > 0)
            sell_trig = (mslice.prev_low <= mslice.chanL) and (mslice.psar_dir
                                                               < 0)
            long_close = (mslice.prev_low <= mslice.chanL) or (mslice.psar_dir
                                                               < 0)
            short_close = (mslice.prev_high >=
                           mslice.chanH) or (mslice.psar_dir > 0)
        else:
            buy_trig = (mslice.open >= mslice.chanH) and (mslice.psar_dir > 0)
            sell_trig = (mslice.open <= mslice.chanL) and (mslice.psar_dir < 0)
            long_close = (mslice.open <= mslice.chanL) or (mslice.psar_dir < 0)
            short_close = (mslice.open >= mslice.chanH) or (mslice.psar_dir >
                                                            0)
        if mslice.close_ind:
            if (pos != 0):
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(
                    dd, 'cost',
                    xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open - misc.sign(pos) * offset)
                pos = 0
        else:
            if (short_close and (pos > 0)) or (long_close and (pos < 0)):
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(
                    dd, 'cost',
                    xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open - misc.sign(pos) * offset)
                pos = 0
            if (buy_trig or sell_trig) and (pos == 0):
                target_pos = buy_trig * unit - sell_trig * unit
                new_pos = pos_class([mslice.contract], [1], target_pos,
                                    mslice.open, mslice.open, **pos_args)
                tradeid += 1
                new_pos.entry_tradeid = tradeid
                new_pos.open(mslice.open + misc.sign(target_pos) * offset, dd)
                curr_pos.append(new_pos)
                pos = target_pos
                xdf.set_value(
                    dd, 'cost', xdf.at[dd, 'cost'] - abs(target_pos) *
                    (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price',
                              mslice.open + misc.sign(target_pos) * offset)
        #if pos_update and pos != 0:
        #    if curr_pos[0].check_exit(mslice.open, stoploss * mslice.boll_std):
        #        curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
        #        tradeid += 1
        #        curr_pos[0].exit_tradeid = tradeid
        #        closed_trades.append(curr_pos[0])
        #        curr_pos = []
        #        xdf.set_value(dd, 'cost', xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
        #        xdf.set_value(dd, 'traded_price', mslice.open - misc.sign(pos) * offset)
        #        pos = 0
        #    else:
        #        curr_pos[0].update_bar(mslice)
        xdf.set_value(dd, 'pos', pos)
    return (xdf, closed_trades)
コード例 #43
0
def dual_thrust_sim( mdf, config):
    (pos_class, pos_args) = config['pos_param']
    update_freq = config.get('update_freq', 0)
    ddf = config['ddf']
    close_daily = config['close_daily']
    offset = config['offset']
    k = config['param'][0]
    win = config['param'][1]
    multiplier = config['param'][2]
    f = config['param'][3]
    chan = config['chan']
    chan_func = config['chan_func']
    use_chan = config['use_chan']
    tcost = config['trans_cost']
    unit = config['unit']
    SL = config['stoploss']
    min_rng = config['min_range']
    if win == -1:
        tr= pd.concat([ddf.high - ddf.low, ddf.close - ddf.close.shift(1)], 
                       join='outer', axis=1).max(axis=1).shift(1)
    elif win == 0:
        tr = pd.concat([(pd.rolling_max(ddf.high, 2) - pd.rolling_min(ddf.close, 2))*multiplier, 
                        (pd.rolling_max(ddf.close, 2) - pd.rolling_min(ddf.low, 2))*multiplier,
                        ddf.high - ddf.close, 
                        ddf.close - ddf.low], 
                        join='outer', axis=1).max(axis=1).shift(1)
    else:
        tr= pd.concat([pd.rolling_max(ddf.high, win) - pd.rolling_min(ddf.close, win), 
                       pd.rolling_max(ddf.close, win) - pd.rolling_min(ddf.low, win)], 
                       join='outer', axis=1).max(axis=1).shift(1)
    ddf['TR'] = tr
    ddf['ATR'] = dh.ATR(ddf, win)
    if use_chan:
        ddf['CH_H'] = eval(chan_func['high']['func'])(ddf, chan, **chan_func['high']['args']).shift(1)
        ddf['CH_L'] = eval(chan_func['low']['func'])(ddf, chan, **chan_func['low']['args']).shift(1)
    if update_freq > 1:
        xdf = dh.conv_ohlc_freq(mdf, str(update_freq)+'Min')
    else:
        xdf = mdf
    xdata = pd.concat([xdf['open'], xdf['high'], xdf['low'], xdf['close']], axis=1, keys=['xopen','xhigh', 'xlow', 'xclose'])
    mdf = mdf.join(xdata, how = 'left').fillna(method='ffill')
    ll = mdf.shape[0]
    mdf['pos'] = 0
    mdf['cost'] = 0
    start_d = ddf.index[0]
    end_d = mdf.index[-1].date()
    prev_d = start_d - datetime.timedelta(days=1)
    curr_pos = []
    closed_trades = []
    tradeid = 0
    for idx, dd in enumerate(mdf.index):
        mslice = mdf.ix[dd]
        min_id = mslice.min_id
        d = mslice.date
        dslice = ddf.ix[d]
        if np.isnan(dslice.TR) or (mslice.close == 0):
            continue
        if use_chan and np.isnan(dslice.CH_H):
            continue
        if len(curr_pos) == 0:
            pos = 0
        else:
            pos = curr_pos[0].pos
        mdf.ix[dd, 'pos'] = pos
        d_open = dslice.open
        if (d_open <= 0):
            continue
        rng = max(min_rng * d_open, k * dslice.TR)
        if (prev_d < d):
            d_open = mslice.open
        else:
            d_open = dslice.open
        prev_d = d
        buytrig  = d_open + rng
        selltrig = d_open - rng
        stoploss = SL * dslice.ATR
        tmp_args = pos_args.copy()
        if 'reset_margin' in pos_args:
            tmp_args['reset_margin'] = dslice.ATR * pos_args['reset_margin']
            stoploss =  tmp_args['reset_margin'] * stoploss
        close_pos = False
        if pos != 0:
            if ((pos > 0) and (mslice.high < buytrig)) or ((pos < 0) and (mslice.low > selltrig)):
                close_pos = curr_pos[0].check_exit(mslice.close, stoploss)
            if (close_pos == False) and (update_freq > 0) and ((mslice.min_id + 1) % update_freq == 0):
                xslice = conv_xslice(mslice)
                curr_pos[0].update_bar(xslice)
            if close_pos or ((mslice.min_id >= config['exit_min']) and (close_daily or (d == end_d))):
                curr_pos[0].close(mslice.close - misc.sign(pos) * offset , dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                mdf.ix[dd, 'cost'] -=  abs(pos) * (offset + mslice.close*tcost)
                pos = 0
        if mslice.min_id < config['exit_min']:
            if (mslice.high >= buytrig) and (pos <=0 ):
                if len(curr_pos) > 0:
                    curr_pos[0].close(mslice.close+offset, dd)
                    tradeid += 1
                    curr_pos[0].exit_tradeid = tradeid
                    closed_trades.append(curr_pos[0])
                    curr_pos = []
                    mdf.ix[dd, 'cost'] -=  abs(pos) * (offset + mslice.close*tcost)
                if (use_chan == False) or (use_chan and (mslice.high >= dslice.CH_H)):
                    new_pos = eval(pos_class)([mslice.contract], [1], unit, mslice.close + offset, mslice.close + offset, **tmp_args)
                    tradeid += 1
                    new_pos.entry_tradeid = tradeid
                    new_pos.open(mslice.close + offset, dd)
                    curr_pos.append(new_pos)
                    pos = unit
                    mdf.ix[dd, 'cost'] -=  abs(pos) * (offset + mslice.close*tcost)
            elif (mslice.low <= selltrig) and (pos >=0 ):
                if len(curr_pos) > 0:
                    curr_pos[0].close(mslice.close-offset, dd)
                    tradeid += 1
                    curr_pos[0].exit_tradeid = tradeid
                    closed_trades.append(curr_pos[0])
                    curr_pos = []
                    mdf.ix[dd, 'cost'] -=  abs(pos) * (offset + mslice.close*tcost)
                if (use_chan == False) or (use_chan and (mslice.low <= dslice.CH_L)):
                    new_pos = eval(pos_class)([mslice.contract], [1], -unit, mslice.close - offset, mslice.close - offset, **tmp_args)
                    tradeid += 1
                    new_pos.entry_tradeid = tradeid
                    new_pos.open(mslice.close - offset, dd)
                    curr_pos.append(new_pos)
                    pos = -unit
                    mdf.ix[dd, 'cost'] -= abs(pos) * (offset + mslice.close*tcost)
        mdf.ix[dd, 'pos'] = pos
    return (mdf, closed_trades)
コード例 #44
0
def layer_sim( mdf, config):
    tcost = config['trans_cost']
    unit = config['unit']
    offset = config['offset']
    pos_class = config['pos_class']
    pos_args  = config['pos_args']    
    freq = config['freq']
    signal_func = config['signal_func']
    signal_args = config['signal_args']
    signal_level = config['signal_level']
    close_daily = config['close_daily']
    for idx, (f, sfunc, sargs, slvl)  in enumerate(zip(freq, signal_func, signal_args, signal_level)):
        df = dh.conv_ohlc_freq(mdf, f, extra_cols=['contract'])
        if idx == 0:
            xdf = df
        farg = tuple(sargs)
        func = eval(sfunc[0])
        sigout = func(df, *farg)
        sig_field = sfunc[1] % farg
        signal = sigout[sig_field]
        long_lvl  = slvl[0] + slvl[1]
        short_lvl = slvl[0] - slvl[1]
        if idx > 0:
            long_ind = (signal > long_lvl)
            short_ind = (signal < short_lvl)
        else:
            long_ind = (signal > long_lvl) & (signal.shift(1) <= long_lvl)
            short_ind = (signal < short_lvl) & (signal.shift(1) >= short_lvl)
        xdata = pd.concat([signal, long_ind, short_ind], axis = 1, keys = ['signal'+str(idx), 'long_ind'+str(idx), 'short_ind'+str(idx)]).shift(1)
        #print xdata
        xdf = xdf.join(xdata, how = 'left').fillna(method='ffill')
    xdf['close_ind'] = np.isnan(xdf['close'].shift(-1))
    if close_daily:
        daily_end = (xdf['date']!=xdf['date'].shift(-1))
        xdf['close_ind'] = xdf['close_ind'] | daily_end        
    xdf['pos'] = 0
    xdf['cost'] = 0
    xdf['traded_price'] = xdf.open
    curr_pos = []
    closed_trades = []
    tradeid = 0
    for idx, dd in enumerate(xdf.index):
        mslice = xdf.ix[dd]
        if len(curr_pos) == 0:
            pos = 0
        else:
            pos = curr_pos[0].pos
        signal_indlist = [np.isnan(getattr(mslice, 'signal' + str(i))) for i in range(len(freq))]
        long_indlist = [getattr(mslice, 'long_ind' + str(i)) for i in range(len(freq))]
        short_indlist = [ getattr(mslice, 'short_ind'+str(i)) for i in range(len(freq))]
        if True in signal_indlist:
            continue
        if mslice.close_ind:
            if pos!=0:
                curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                tradeid += 1
                curr_pos[0].exit_tradeid = tradeid
                closed_trades.append(curr_pos[0])
                curr_pos = []
                xdf.set_value(dd, 'cost', xdf.at[dd, 'cost'] - abs(pos) * ( mslice.open * tcost))
                xdf.set_value(dd, 'traded_price', mslice.open - misc.sign(pos) * offset)
                pos = 0
        else:
            if (pos !=0):
                direction = 0
                long_ind = (True in long_indlist)
                short_ind = (True in short_indlist)
                if ((pos < 0) and long_ind) or ((pos > 0) and short_ind):
                    curr_pos[0].close(mslice.open - misc.sign(pos) * offset, dd)
                    tradeid += 1
                    curr_pos[0].exit_tradeid = tradeid
                    closed_trades.append(curr_pos[0])
                    curr_pos = []
                    xdf.set_value(dd, 'cost', xdf.at[dd, 'cost'] - abs(pos) * (mslice.open * tcost))
                    xdf.set_value(dd, 'traded_price', mslice.open - misc.sign(pos) * offset)
                    pos = 0                
            long_ind = (False not in long_indlist)
            short_ind = (False not in short_indlist)
            if (long_ind or short_ind) and (pos == 0):
                target_pos = long_ind * unit - short_ind * unit
                new_pos = pos_class([mslice.contract], [1], target_pos, mslice.open, mslice.open, **pos_args)
                tradeid += 1
                new_pos.entry_tradeid = tradeid
                new_pos.open(mslice.open + misc.sign(target_pos)*offset, dd)
                curr_pos.append(new_pos)
                #print dd, target_pos, len(curr_pos), curr_pos[0].pos, curr_pos #[getattr(mslice, 'long_ind' + str(i)) for i in range(len(freq))]
                pos = target_pos
                xdf.set_value(dd, 'cost', xdf.at[dd, 'cost'] -  abs(target_pos) * (mslice.open * tcost))
                xdf.set_value(dd, 'traded_price', mslice.open + misc.sign(target_pos)*offset)            
        xdf.set_value(dd, 'pos', pos)
    return (xdf, closed_trades)
コード例 #45
0
ファイル: tradeagent.py プロジェクト: zhuzhenping/pyktrader2
 def prepare_data_env(self, inst, mid_day=True):
     if self.instruments[inst].ptype == instrument.ProductType.Option:
         return
     if self.daily_data_days > 0 or mid_day:
         #self.logger.debug('Updating historical daily data for %s' % self.scur_day.strftime('%Y-%m-%d'))
         daily_start = workdays.workday(self.scur_day,
                                        -self.daily_data_days, CHN_Holidays)
         daily_end = self.scur_day
         ddf = mysqlaccess.load_daily_data_to_df('fut_daily',
                                                 inst,
                                                 daily_start,
                                                 daily_end,
                                                 index_col=None)
         if len(ddf) > 0:
             self.instruments[inst].price = ddf['close'].iloc[-1]
             self.instruments[inst].last_update = 0
             self.instruments[inst].prev_close = ddf['close'].iloc[-1]
             for fobj in self.day_data_func[inst]:
                 ts = fobj.sfunc(ddf)
                 if type(ts).__name__ == 'Series':
                     if ts.name in ddf.columns:
                         self.logger.warning(
                             'TimeSeries name %s is already in the columns for inst = %s'
                             % (ts.name, inst))
                     ddf[ts.name] = ts
                 elif type(ts).__name__ == 'DataFrame':
                     for col_name in ts.columns:
                         if col_name in ddf.columns:
                             self.logger.warning(
                                 'TimeSeries name %s is already in the columns for inst = %s'
                                 % (col_name, inst))
                         ddf[col_name] = ts[col_name]
         self.day_data[inst] = data_handler.DynamicRecArray(dataframe=ddf)
     if self.min_data_days > 0 or mid_day:
         #self.logger.debug('Updating historical min data for %s' % self.scur_day.strftime('%Y-%m-%d'))
         d_start = workdays.workday(self.scur_day, -self.min_data_days,
                                    CHN_Holidays)
         d_end = self.scur_day
         min_start = int(self.instruments[inst].start_tick_id / 1000)
         min_end = int(self.instruments[inst].last_tick_id / 1000) + 1
         mdf = mysqlaccess.load_min_data_to_df('fut_min',
                                               inst,
                                               d_start,
                                               d_end,
                                               minid_start=min_start,
                                               minid_end=min_end,
                                               database='blueshale',
                                               index_col=None)
         mdf = backtest.cleanup_mindata(mdf,
                                        self.instruments[inst].product,
                                        index_col=None)
         mdf['bar_id'] = self.conv_bar_id(mdf['min_id'], inst)
         if len(mdf) > 0:
             min_date = mdf['date'].iloc[-1]
             if (len(self.day_data[inst]) == 0) or (
                     min_date > self.day_data[inst].data['date'][-1]):
                 ddf = data_handler.conv_ohlc_freq(mdf, 'd', index_col=None)
                 self.cur_day[inst]['open'] = float(ddf.open[-1])
                 self.cur_day[inst]['close'] = float(ddf.close[-1])
                 self.cur_day[inst]['high'] = float(ddf.high[-1])
                 self.cur_day[inst]['low'] = float(ddf.low[-1])
                 self.cur_day[inst]['volume'] = int(ddf.volume[-1])
                 self.cur_day[inst]['openInterest'] = int(
                     ddf.openInterest[-1])
                 self.cur_min[inst]['datetime'] = pd.datetime(
                     *mdf['datetime'].iloc[-1].timetuple()[0:-3])
                 self.cur_min[inst]['date'] = mdf['date'].iloc[-1]
                 self.cur_min[inst]['open'] = float(mdf['open'].iloc[-1])
                 self.cur_min[inst]['close'] = float(mdf['close'].iloc[-1])
                 self.cur_min[inst]['high'] = float(mdf['high'].iloc[-1])
                 self.cur_min[inst]['low'] = float(mdf['low'].iloc[-1])
                 self.cur_min[inst]['volume'] = self.cur_day[inst]['volume']
                 self.cur_min[inst]['openInterest'] = self.cur_day[inst][
                     'openInterest']
                 self.cur_min[inst]['min_id'] = int(mdf['min_id'].iloc[-1])
                 self.cur_min[inst]['bar_id'] = self.conv_bar_id(
                     self.cur_min[inst]['min_id'], inst)
                 self.instruments[inst].price = float(mdf['close'].iloc[-1])
                 self.instruments[inst].last_update = 0
                 #self.logger.debug('inst=%s tick data loaded for date=%s' % (inst, min_date))
             if 1 not in self.min_data_func[inst]:
                 self.min_data[inst][1] = data_handler.DynamicRecArray(
                     dataframe=mdf)
             for m in sorted(self.min_data_func[inst]):
                 if m != 1:
                     bar_func = lambda ts: self.conv_bar_id(ts, inst)
                     mdf_m = data_handler.conv_ohlc_freq(
                         mdf,
                         str(m) + 'min',
                         index_col=None,
                         bar_func=bar_func,
                         extra_cols=['bar_id'])
                 else:
                     mdf_m = mdf
                 for fobj in self.min_data_func[inst][m]:
                     ts = fobj.sfunc(mdf_m)
                     if type(ts).__name__ == 'Series':
                         if ts.name in mdf_m.columns:
                             self.logger.warning(
                                 'TimeSeries name %s is already in the columns for inst = %s'
                                 % (ts.name, inst))
                         mdf_m[ts.name] = ts
                     elif type(ts).__name__ == 'DataFrame':
                         for col_name in ts.columns:
                             if col_name in mdf_m.columns:
                                 self.logger.warning(
                                     'TimeSeries name %s is already in the columns for inst = %s'
                                     % (col_name, inst))
                             mdf_m[col_name] = ts[col_name]
                 self.min_data[inst][m] = data_handler.DynamicRecArray(
                     dataframe=mdf_m)
コード例 #46
0
import data_handler as dh
import pandas as pd
import numpy as np
import strategy as strat
import datetime
import backtest

def aberration( asset, start_date, end_date, freqs, windows, config):
    nearby  = config['nearby']
    rollrule = config['rollrule']
    file_prefix = config['file_prefix'] + '_' + asset + '_'
	df = misc.nearby(asset, nearby, start_date, end_date, rollrule, 'm', need_shift=True)
	
    output = {}
    for ix, freq in enumerate(freqs):
		xdf = dh.conv_ohlc_freq(df, freq):
        for iy, win in enumerate(windows):
            idx = ix*10+iy
            config['win'] = win
            (res, closed_trades, ts) = aberration_sim( xdf, mdf, , config)
            output[idx] = res
            print 'saving results for scen = %s' % str(idx)
            all_trades = {}
            for i, tradepos in enumerate(closed_trades):
                all_trades[i] = strat.tradepos2dict(tradepos)
            fname = file_prefix + str(idx) + '_trades.csv'
            trades = pd.DataFrame.from_dict(all_trades).T  
            trades.to_csv(fname)
            fname = file_prefix + str(idx) + '_dailydata.csv'
            ts.to_csv(fname)
    fname = file_prefix + 'stats.csv'