def format20n_input(trained_classes, untrained_classes): datasets1 = data_helpers.get_datasets_20newsgroup( subset="test", categories=trained_classes, remove=('headers', 'footers', 'quotes')) x_raw1, y_raw1 = data_helpers.load_data_labels(datasets1) y_test1 = np.argmax(y_raw1, axis=1) labels1 = datasets1['target_names'] dataset2 = data_helpers.get_datasets_20newsgroup( subset="test", categories=untrained_classes, remove=('headers', 'footers', 'quotes')) x_raw2, y_test2 = data_helpers.load_data_labels(dataset2) y_test2 = np.add(np.argmax(y_test2, axis=1), len(trained_classes)) labels2 = dataset2['target_names'] x_net = x_raw1 + x_raw2 y_net = np.append(y_test1, y_test2) labels = labels1 + labels2 return (x_net, y_net, labels)
def load_data_and_labels(self): # Load data print("Loading embedding and dataset...") embedding_name = None dataset_name = self.cfg["datasets"]["default"] if FLAGS.enable_word_embeddings and self.cfg['word_embeddings'][ 'default'] is not None: embedding_name = self.cfg['word_embeddings']['default'] embedding_dimension = self.cfg['word_embeddings'][embedding_name][ 'dimension'] else: embedding_dimension = FLAGS.embedding_dim datasets = None if dataset_name == "mrpolarity": datasets = data_helpers.get_datasets_mrpolarity( self.cfg["datasets"][dataset_name]["positive_data_file"] ["path"], self.cfg["datasets"][dataset_name] ["negative_data_file"]["path"]) elif dataset_name == "20newsgroup": datasets = data_helpers.get_datasets_20newsgroup( subset="train", categories=self.cfg["datasets"][dataset_name]["categories"], shuffle=self.cfg["datasets"][dataset_name]["shuffle"], random_state=self.cfg["datasets"][dataset_name] ["random_state"]) elif dataset_name == "localdata": datasets = data_helpers.get_datasets_localdata( container_path=self.cfg["datasets"][dataset_name] ["container_path"], categories=self.cfg["datasets"][dataset_name]["categories"], shuffle=self.cfg["datasets"][dataset_name]["shuffle"], random_state=self.cfg["datasets"][dataset_name] ["random_state"]) print("Loaded dataset: {}. [Embedding: {}].\nLoading labels".format( dataset_name, embedding_name)) x_text, y = data_helpers.load_data_labels(datasets) self.x_text = x_text self.y = y self.embedding_name = embedding_name self.embedding_dimension = embedding_dimension self.dataset_name = dataset_name print("Done load_data_and_labels()")
dataset = "amazon" #trained on 20 classes and tested on 20 classes training_classes = [ 'Amplifier', 'Automotive', 'Battery', 'Beauty', 'Cable', 'Camera', 'CDPlayer', 'Clothing', 'Computer', 'Conditioner', 'Fan', 'Flashlight', 'Graphics Card', 'Headphone', 'Home Improvement', 'Jewelry', 'Kindle', 'Kitchen', 'Lamp', 'Luggage' ] #dataset = "20newsgroup" if dataset == "20newsgroup": datasets = data_helpers.get_datasets_20newsgroup( subset="test", categories=training_classes, remove=('headers', 'footers', 'quotes')) x_raw, y_test = data_helpers.load_data_labels(datasets) y_test = np.argmax(y_test, axis=1) else: datasets = data_helpers.get_datasets_localdata( "./amazon/test", categories=training_classes) # TODO: tweak parameters in the future x_raw, y_test = data_helpers.load_data_labels( datasets) # text is stored in x_test; # labels are stored in y y_test = np.argmax(y_test, axis=1) print("length of y_test", y_test[:20]) print("Total number of test examples: {}".format(len(y_test))) print(datasets['target_names'])
print("{}={}".format(attr.upper(), value)) print("") datasets = None # CHANGE THIS: Load data. Load your own data here dataset_name = cfg["datasets"]["default"] if FLAGS.eval_train: if dataset_name == "mrpolarity": datasets = data_helpers.get_datasets_mrpolarity( cfg["datasets"][dataset_name]["positive_data_file"]["path"], cfg["datasets"][dataset_name]["negative_data_file"]["path"]) elif dataset_name == "20newsgroup": datasets = data_helpers.get_datasets_20newsgroup( subset="test", categories=cfg["datasets"][dataset_name]["categories"], shuffle=cfg["datasets"][dataset_name]["shuffle"], random_state=cfg["datasets"][dataset_name]["random_state"]) elif dataset_name == "abstract": datasets = data_helpers.get_datasets_abstract("data/") elif dataset_name == 'intents': datasets = data_helpers.get_datasets_intentst("data/") x_text, y = data_helpers.load_data_labels(datasets) x_raw, y_test = data_helpers.load_data_labels(datasets) y_test = np.argmax(y_test, axis=1) print("Total number of test examples: {}".format(len(y_test))) else: if dataset_name == "mrpolarity": x_raw = [ "a masterpiece four years in the making", "everything is off." ]
'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc'] training_classes = ['comp.graphics', 'alt.atheism', 'comp.sys.mac.hardware', 'misc.forsale', 'rec.autos'] # load data print("Loading data...") if dataset == "20newsgroup": datasets = data_helpers.get_datasets_20newsgroup(subset='train', categories=training_classes, remove=()) # TODO: use the remove parameter x_text, y_train = data_helpers.load_data_labels_remove_SW(datasets) else: dataset = data_helpers.get_datasets_localdata("./data/20newsgroup", categories=None) # TODO: tweak parameters in the future x_text, y_train = data_helpers.load_data_labels(dataset) # text is stored in x_test; # labels are stored in y # Build vocabulary max_document_length = max([len(x.split(" ")) for x in x_text]) # TODO: should be hardcoded to save time print("Max document length: {}".format(max_document_length)) vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length) x_train = np.array(list(vocab_processor.fit_transform(x_text))) # Randomly shuffle data # np.random.seed(10) # shuffle_indices = np.random.permutation(np.arange(len(y)))
def main(): import time start_time = time.time() FLAGS = flagClass() with open("config.yml", 'r') as ymlfile: cfg = yaml.load(ymlfile) dataset_name = cfg["datasets"]["default"] if FLAGS.enable_word_embeddings and cfg['word_embeddings'][ 'default'] is not None: embedding_name = cfg['word_embeddings']['default'] embedding_dimension = cfg['word_embeddings'][embedding_name][ 'dimension'] else: embedding_dimension = FLAGS.embedding_dim # Data Preparation # ================================================== # Load data print("Loading data...") datasets = None if dataset_name == "mrpolarity": datasets = data_helpers.get_datasets_mrpolarity( cfg["datasets"][dataset_name]["positive_data_file"]["path"], cfg["datasets"][dataset_name]["negative_data_file"]["path"]) elif dataset_name == 'spamham': datasets = data_helpers.get_datasets_mrpolarity( cfg["datasets"][dataset_name]["spam_file"]["path"], cfg["datasets"][dataset_name]["ham_file"]["path"]) elif dataset_name == "20newsgroup": datasets = data_helpers.get_datasets_20newsgroup( subset="train", categories=cfg["datasets"][dataset_name]["categories"], shuffle=cfg["datasets"][dataset_name]["shuffle"], random_state=cfg["datasets"][dataset_name]["random_state"]) elif dataset_name == "dbpedia": datasets = data_helpers.get_datasets_dbpedia( cfg["datasets"][dataset_name]["train_file"]["path"], cfg["datasets"][dataset_name]["train_file"]["limit"]) elif dataset_name == "email": datasets = data_helpers.get_datasets_email( container_path=cfg["datasets"][dataset_name]["container_path"], categories=cfg["datasets"][dataset_name]["categories"], shuffle=cfg["datasets"][dataset_name]["shuffle"], random_state=cfg["datasets"][dataset_name]["random_state"]) elif dataset_name == "localdata": datasets = data_helpers.get_datasets_localdata( container_path=cfg["datasets"][dataset_name]["container_path"], categories=cfg["datasets"][dataset_name]["categories"], shuffle=cfg["datasets"][dataset_name]["shuffle"], random_state=cfg["datasets"][dataset_name]["random_state"]) x_text, y = data_helpers.load_data_labels(datasets) # Build vocabulary # To limit memory usage, you can cut off input text to first 40 words # Other research has shown that first 40 words in text (IMDB dataset?) # were representative of the content of the sentence for classification # purposes - Comment out one of the two lines below # max_document_length = max([len(x.split(" ")) for x in x_text]) max_document_length = 40 # read up to 40 words from each sentence vocab_processor = learn.preprocessing.VocabularyProcessor( max_document_length) x = np.array(list(vocab_processor.fit_transform(x_text))) # Randomly shuffle data np.random.seed(10) shuffle_indices = np.random.permutation(np.arange(len(y))) x_shuffled = x[shuffle_indices] y_shuffled = y[shuffle_indices] # Split train/test set # TODO: This is very crude, should use cross-validation dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y))) x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[ dev_sample_index:] y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[ dev_sample_index:] print("Vocabulary Size: {:d}".format(len(vocab_processor.vocabulary_))) print("Train/Dev split: {:d}/{:d}".format(len(y_train), len(y_dev))) print('Sequence_length={}'.format(x_train.shape[1])) # Training # ================================================== with tf.Graph().as_default(): session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) sess = tf.Session(config=session_conf) with sess.as_default(): cnn = TextCNN(sequence_length=x_train.shape[1], num_classes=y_train.shape[1], vocab_size=len(vocab_processor.vocabulary_), embedding_size=embedding_dimension, filter_sizes=list( map(int, FLAGS.filter_sizes.split(","))), num_filters=FLAGS.num_filters, l2_reg_lambda=FLAGS.l2_reg_lambda) # Define Training procedure global_step = tf.Variable(0, name="global_step", trainable=False) optimizer = tf.train.AdamOptimizer(cnn.learning_rate) grads_and_vars = optimizer.compute_gradients(cnn.loss) train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step) # Keep track of gradient values and sparsity (optional) grad_summaries = [] for g, v in grads_and_vars: if g is not None: grad_hist_summary = tf.summary.histogram( "{}/grad/hist".format(v.name), g) sparsity_summary = tf.summary.scalar( "{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g)) grad_summaries.append(grad_hist_summary) grad_summaries.append(sparsity_summary) grad_summaries_merged = tf.summary.merge(grad_summaries) # Output directory for models and summaries timestamp = str(int(time.time())) out_dir = os.path.abspath( os.path.join(os.path.curdir, "runs", timestamp)) print("Writing to {}\n".format(out_dir)) # Summaries for loss and accuracy loss_summary = tf.summary.scalar("loss", cnn.loss) acc_summary = tf.summary.scalar("accuracy", cnn.accuracy) # Train Summaries train_summary_op = tf.summary.merge( [loss_summary, acc_summary, grad_summaries_merged]) train_summary_dir = os.path.join(out_dir, "summaries", "train") train_summary_writer = tf.summary.FileWriter( train_summary_dir, sess.graph) # Dev summaries dev_summary_op = tf.summary.merge([loss_summary, acc_summary]) dev_summary_dir = os.path.join(out_dir, "summaries", "dev") dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph) # Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it checkpoint_dir = os.path.abspath( os.path.join(out_dir, "checkpoints")) checkpoint_prefix = os.path.join(checkpoint_dir, "model") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints) # Write vocabulary vocab_processor.save(os.path.join(out_dir, "vocab")) # Initialize all variables sess.run(tf.global_variables_initializer()) if FLAGS.enable_word_embeddings and cfg['word_embeddings'][ 'default'] is not None: vocabulary = vocab_processor.vocabulary_ initW = None if embedding_name == 'word2vec': # load embedding vectors from the word2vec print("Load word2vec file {}".format( cfg['word_embeddings']['word2vec']['path'])) initW = data_helpers.load_embedding_vectors_word2vec( vocabulary, cfg['word_embeddings']['word2vec']['path'], cfg['word_embeddings']['word2vec']['binary']) print("word2vec file has been loaded") elif embedding_name == 'glove': # load embedding vectors from the glove print("Load glove file {}".format( cfg['word_embeddings']['glove']['path'])) initW = data_helpers.load_embedding_vectors_glove( vocabulary, cfg['word_embeddings']['glove']['path'], embedding_dimension) print("glove file has been loaded\n") sess.run(cnn.W.assign(initW)) def train_step(x_batch, y_batch, learning_rate): """ A single training step """ feed_dict = { cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: FLAGS.dropout_keep_prob, cnn.learning_rate: learning_rate } _, step, summaries, loss, accuracy = sess.run([ train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy ], feed_dict) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g}, learning_rate {:g}". format(time_str, step, loss, accuracy, learning_rate)) train_summary_writer.add_summary(summaries, step) def dev_step(x_batch, y_batch, writer=None): """ Evaluates model on a dev set """ feed_dict = { cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: 1.0 } step, summaries, loss, accuracy, gr = sess.run([ global_step, dev_summary_op, cnn.loss, cnn.accuracy, cnn.grad ], feed_dict) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g}, gr {}".format( time_str, step, loss, accuracy, gr)) if writer: writer.add_summary(summaries, step) # Generate batches batches = data_helpers.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs) print("Number of epochs: {}".format(FLAGS.num_epochs)) num_batches_per_epoch = int( (len(list(zip(x_train, y_train))) - 1) / FLAGS.batch_size) + 1 print("Batches per epoch: {}".format(num_batches_per_epoch)) print("Batch size: {}".format(FLAGS.batch_size)) # It uses dynamic learning rate with a high value at the beginning to speed up the training max_learning_rate = 0.005 min_learning_rate = 0.0001 decay_speed = FLAGS.decay_coefficient * len( y_train) / FLAGS.batch_size # Training loop. For each batch... counter = 0 for batch in batches: learning_rate = min_learning_rate + ( max_learning_rate - min_learning_rate) * math.exp( -counter / decay_speed) counter += 1 x_batch, y_batch = zip(*batch) train_step(x_batch, y_batch, learning_rate) current_step = tf.train.global_step(sess, global_step) if current_step % FLAGS.evaluate_every == 0: print("\nEvaluation:") dev_step(x_dev, y_dev, writer=dev_summary_writer) print("") if current_step % FLAGS.checkpoint_every == 0: path = saver.save(sess, checkpoint_prefix, global_step=current_step) print("Saved model checkpoint to {}\n".format(path)) print("runtime was " + str(time.time() - start_time))
FLAGS = tf.flags.FLAGS FLAGS._parse_flags() print("\nParameters:") for attr, value in sorted(FLAGS.__flags.items()): print("{}={}".format(attr.upper(), value)) print("") # Data Preparation # ================================================== # Load data print("Loading data...") #import newsgroups data datasets = data_helpers.get_datasets_20newsgroup(subset="train", categories=['comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x'], shuffle=True) x_text, y = data_helpers.load_data_and_labels(datasets) # Build vocabulary max_document_length = max([len(x.split(" ")) for x in x_text]) vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length) x = np.array(list(vocab_processor.fit_transform(x_text))) # Randomly shuffle data np.random.seed(10) shuffle_indices = np.random.permutation(np.arange(len(y))) x_shuffled = x[shuffle_indices] y_shuffled = y[shuffle_indices]