saver = tf.train.Saver(tf.global_variables(), max_to_keep=1) tf.add_to_collection('accuracy', accuracy) tf.add_to_collection('x1', x1) tf.add_to_collection('x2', x2) tf.add_to_collection('y', y) with tf.Session() as sess: sess.run(init) step = 1 model = data_helpers.load_model( './Data/GoogleNews-vectors-negative300.bin') if test == 'PDTB': sentences1, sentences2, labels = data_helpers.load_labels_and_data_PDTB( model, './Data/PDTB_implicit/train.txt') elif test == 'SICK': sentences1, sentences2, labels = data_helpers.load_data_SICK( model, './Data/SICK/train.txt') total = 0 while total < training_iters: start = total % len(sentences1) end = (total + batch_size) % len(sentences1) if end <= start: end = len(sentences1) batch_x1 = sentences1[start:end] batch_x2 = sentences2[start:end] batch_y = labels[start:end] total += (len(batch_x1)) sess.run(optimizer, feed_dict={x1: batch_x1, x2: batch_x2, y: batch_y}) if step % display_step == 0: #calculate batch loss and accuracy loss, acc = sess.run([cost, accuracy],
tf.add_to_collection('accuracy', accuracy) tf.add_to_collection('x1', x1) tf.add_to_collection('x2', x2) tf.add_to_collection('y', y) with tf.Session() as sess: sess.run(init) step = 1 model = data_helpers.load_model( './Data/GoogleNews-vectors-negative300.bin') if test == 'PDTB': sentences1, sentences2, labels, lengths1, lengths2 = \ data_helpers.load_labels_and_data_PDTB(model, './Data/PDTB_implicit/train.txt', False, True, True) elif test == 'SICK': sentences1, sentences2, labels, lengths1, lengths2 = \ data_helpers.load_data_SICK(model, './Data/SICK/train.txt', False, True, True) total = 0 while total < training_iters: start = total % len(sentences1) end = (total + batch_size) % len(sentences1) if end <= start: end = len(sentences1) batch_x1 = sentences1[start:end] batch_x2 = sentences2[start:end] batch_x1_lengths = lengths1[start:end] batch_x2_lengths = lengths2[start:end] batch_y = labels[start:end] total += (len(batch_x1)) sess.run(optimizer, feed_dict={