flags.DEFINE_string("save_path", None, "Model output directory") flags.DEFINE_string("config_file", None, "Model config file") FLAGS = flags.FLAGS if __name__ == "__main__": _reset_rand_seed() if not tf.gfile.Exists('./save'): tf.gfile.MkDir('./save') # Config stuff config = get_config(FLAGS) data_input = DataInput(config) _reset_rand_seed() train_batches = data_input.train_epoch_size train_generator = data_input.batch_generator(True) val_batches = data_input.val_epoch_size val_generator = data_input.batch_generator(False) # Model building if config.model_type == 'motiongan': model_wrap = get_model(config) if FLAGS.verbose: print('Discriminator model:') print(model_wrap.disc_model.summary()) print('Generator model:') print(model_wrap.gen_model.summary()) print('GAN model:') print(model_wrap.gan_model.summary())
def _reset_rand_seed(): seed = 42 np.random.seed(seed) if __name__ == "__main__": # Config stuff config = get_config(FLAGS) # config.only_val = True config.normalize_data = False # config.pick_num = 0 data_input = DataInput(config) _reset_rand_seed() n_batches = 4 n_splits = 32 print('Plotting %d batches in %d splits for the %s dataset' % (n_batches, n_splits, config.data_set)) for b in range(n_batches): labs_batch, poses_batch = data_input.batch_generator(False).next() n_seqs = (config.batch_size // n_splits) for i in trange(n_splits): plot_seq_gif( poses_batch[i * n_seqs:(i + 1) * n_seqs, :, :, :3], labs_batch[i * n_seqs:(i + 1) * n_seqs, ...], config.data_set, # save_path='save/vis_%s_%d_%d.gif' % (config.data_set, b, i), figwidth=1920, figheight=1080)