def main(): args = parse_args() state = prototype_state() state_path = args.model_prefix + "_state.pkl" model_path = args.model_prefix + "_model.npz" with open(state_path) as src: state.update(cPickle.load(src)) logging.basicConfig(level=getattr(logging, state['level']), format="%(asctime)s: %(name)s: %(levelname)s: %(message)s") model = DialogEncoderDecoder(state) if os.path.isfile(model_path): logger.debug("Loading previous model") model.load(model_path) else: raise Exception("Must specify a valid model path") eval_batch = model.build_eval_function() eval_misclass_batch = model.build_eval_misclassification_function() if args.test_path: state['test_triples'] = args.test_path # Initialize list of stopwords to remove if args.exclude_stop_words: logger.debug("Initializing stop-word list") stopwords_lowercase = stopwords.lower().split(' ') stopwords_indices = [] for word in stopwords_lowercase: if word in model.str_to_idx: stopwords_indices.append(model.str_to_idx[word]) test_data = get_test_iterator(state) test_data.start() # Load document ids if args.document_ids: labels_file = open(args.document_ids, 'r') labels_text = labels_file.readlines() document_ids = numpy.zeros((len(labels_text)), dtype='int32') for i in range(len(labels_text)): document_ids[i] = int(labels_text[i].split('\t')[0]) unique_document_ids = numpy.unique(document_ids) assert(test_data.data_len == document_ids.shape[0]) else: print 'Warning no file with document ids given... standard deviations cannot be computed.' document_ids = numpy.zeros((test_data.data_len), dtype='int32') unique_document_ids = numpy.unique(document_ids) # Variables to store test statistics test_cost = 0 # negative log-likelihood test_cost_first_utterances = 0 # marginal negative log-likelihood of first two utterances test_cost_last_utterance_marginal = 0 # marginal (approximate) negative log-likelihood of last utterances test_misclass = 0 # misclassification error-rate test_misclass_first_utterances = 0 # misclassification error-rate of first two utterances test_empirical_mutual_information = 0 # empirical mutual information between first two utterances and third utterance, where the marginal P(U_3) is approximated by P(U_3, empty, empty). if model.bootstrap_from_semantic_information: test_semantic_cost = 0 test_semantic_misclass = 0 test_wordpreds_done = 0 # number of words in total test_wordpreds_done_last_utterance = 0 # number of words in last utterances test_triples_done = 0 # number of triples evaluated # Variables to compute negative log-likelihood and empirical mutual information per genre compute_genre_specific_metrics = False if hasattr(model, 'semantic_information_dim'): compute_genre_specific_metrics = True test_cost_per_genre = numpy.zeros((model.semantic_information_dim, 1), dtype='float32') test_mi_per_genre = numpy.zeros((model.semantic_information_dim, 1), dtype='float32') test_wordpreds_done_per_genre = numpy.zeros((model.semantic_information_dim, 1), dtype='float32') test_triples_done_per_genre = numpy.zeros((model.semantic_information_dim, 1), dtype='float32') # Number of triples in dataset test_data_len = test_data.data_len # Correspond to the same variables as above, but now for each triple. # e.g. test_cost_list is a numpy array with the negative log-likelihood for each triple in the test set test_cost_list = numpy.zeros((test_data_len,)) test_pmi_list = numpy.zeros((test_data_len,)) test_cost_last_utterance_marginal_list = numpy.zeros((test_data_len,)) test_misclass_list = numpy.zeros((test_data_len,)) test_misclass_last_utterance_list = numpy.zeros((test_data_len,)) # Array containing number of words in each triple words_in_triples_list = numpy.zeros((test_data_len,)) # Array containing number of words in last utterance of each triple words_in_last_utterance_list = numpy.zeros((test_data_len,)) # Prepare variables for printing the test examples the model performs best and worst on test_extrema_setsize = min(state['track_extrema_samples_count'], test_data_len) test_extrema_samples_to_print = min(state['print_extrema_samples_count'], test_extrema_setsize) test_lowest_costs = numpy.ones((test_extrema_setsize,))*1000 test_lowest_triples = numpy.ones((test_extrema_setsize,state['seqlen']))*1000 test_highest_costs = numpy.ones((test_extrema_setsize,))*(-1000) test_highest_triples = numpy.ones((test_extrema_setsize,state['seqlen']))*(-1000) logger.debug("[TEST START]") while True: batch = test_data.next() # Train finished if not batch: break logger.debug("[TEST] - Got batch %d,%d" % (batch['x'].shape[1], batch['max_length'])) x_data = batch['x'] x_data_reversed = batch['x_reversed'] max_length = batch['max_length'] x_cost_mask = batch['x_mask'] x_semantic = batch['x_semantic'] x_semantic_nonempty_indices = numpy.where(x_semantic >= 0) # Hack to get rid of start of sentence token. if args.exclude_sos and model.sos_sym != -1: x_cost_mask[x_data == model.sos_sym] = 0 if args.exclude_stop_words: for word_index in stopwords_indices: x_cost_mask[x_data == word_index] = 0 batch['num_preds'] = numpy.sum(x_cost_mask) c, c_list = eval_batch(x_data, x_data_reversed, max_length, x_cost_mask, x_semantic) c_list = c_list.reshape((batch['x'].shape[1],max_length), order=(1,0)) c_list = numpy.sum(c_list, axis=1) # Compute genre specific stats... if compute_genre_specific_metrics: non_nan_entries = numpy.array(c_list >= 0, dtype=int) c_list[numpy.where(non_nan_entries==0)] = 0 test_cost_per_genre += (numpy.asmatrix(non_nan_entries*c_list) * numpy.asmatrix(x_semantic)).T test_wordpreds_done_per_genre += (numpy.asmatrix(non_nan_entries*numpy.sum(x_cost_mask, axis=0)) * numpy.asmatrix(x_semantic)).T if numpy.isinf(c) or numpy.isnan(c): continue test_cost += c # Store test costs in list nxt = min((test_triples_done+batch['x'].shape[1]), test_data_len) triples_in_batch = nxt-test_triples_done words_in_triples = numpy.sum(x_cost_mask, axis=0) words_in_triples_list[(nxt-triples_in_batch):nxt] = words_in_triples[0:triples_in_batch] # We don't need to normalzie by the number of words... not if we're computing standard deviations at least... test_cost_list[(nxt-triples_in_batch):nxt] = c_list[0:triples_in_batch] # Store best and worst test costs con_costs = numpy.concatenate([test_lowest_costs, c_list[0:triples_in_batch]]) con_triples = numpy.concatenate([test_lowest_triples, x_data[:, 0:triples_in_batch].T], axis=0) con_indices = con_costs.argsort()[0:test_extrema_setsize][::1] test_lowest_costs = con_costs[con_indices] test_lowest_triples = con_triples[con_indices] con_costs = numpy.concatenate([test_highest_costs, c_list[0:triples_in_batch]]) con_triples = numpy.concatenate([test_highest_triples, x_data[:, 0:triples_in_batch].T], axis=0) con_indices = con_costs.argsort()[-test_extrema_setsize:][::-1] test_highest_costs = con_costs[con_indices] test_highest_triples = con_triples[con_indices] # Compute word-error rate miscl, miscl_list = eval_misclass_batch(x_data, x_data_reversed, max_length, x_cost_mask, x_semantic) if numpy.isinf(c) or numpy.isnan(c): continue test_misclass += miscl # Store misclassification errors in list miscl_list = miscl_list.reshape((batch['x'].shape[1],max_length), order=(1,0)) miscl_list = numpy.sum(miscl_list, axis=1) test_misclass_list[(nxt-triples_in_batch):nxt] = miscl_list[0:triples_in_batch] # Equations to compute empirical mutual information # Compute marginal log-likelihood of last utterance in triple: # We approximate it with the margina log-probabiltiy of the utterance being observed first in the triple x_data_last_utterance = batch['x_last_utterance'] x_data_last_utterance_reversed = batch['x_last_utterance_reversed'] x_cost_mask_last_utterance = batch['x_mask_last_utterance'] x_start_of_last_utterance = batch['x_start_of_last_utterance'] # Hack to get rid of start of sentence token. if args.exclude_sos and model.sos_sym != -1: x_cost_mask_last_utterance[x_data_last_utterance == model.sos_sym] = 0 if args.exclude_stop_words: for word_index in stopwords_indices: x_cost_mask_last_utterance[x_data_last_utterance == word_index] = 0 words_in_last_utterance = numpy.sum(x_cost_mask_last_utterance, axis=0) words_in_last_utterance_list[(nxt-triples_in_batch):nxt] = words_in_last_utterance[0:triples_in_batch] batch['num_preds_at_utterance'] = numpy.sum(x_cost_mask_last_utterance) marginal_last_utterance_loglikelihood, marginal_last_utterance_loglikelihood_list = eval_batch(x_data_last_utterance, x_data_last_utterance_reversed, max_length, x_cost_mask_last_utterance, x_semantic) marginal_last_utterance_loglikelihood_list = marginal_last_utterance_loglikelihood_list.reshape((batch['x'].shape[1],max_length), order=(1,0)) marginal_last_utterance_loglikelihood_list = numpy.sum(marginal_last_utterance_loglikelihood_list, axis=1) test_cost_last_utterance_marginal_list[(nxt-triples_in_batch):nxt] = marginal_last_utterance_loglikelihood_list[0:triples_in_batch] # Compute marginal log-likelihood of first utterances in triple by masking the last utterance x_cost_mask_first_utterances = numpy.copy(x_cost_mask) for i in range(batch['x'].shape[1]): x_cost_mask_first_utterances[x_start_of_last_utterance[i]:max_length, i] = 0 marginal_first_utterances_loglikelihood, marginal_first_utterances_loglikelihood_list = eval_batch(x_data, x_data_reversed, max_length, x_cost_mask_first_utterances, x_semantic) marginal_first_utterances_loglikelihood_list = marginal_first_utterances_loglikelihood_list.reshape((batch['x'].shape[1],max_length), order=(1,0)) marginal_first_utterances_loglikelihood_list = numpy.sum(marginal_first_utterances_loglikelihood_list, axis=1) # Compute empirical mutual information and pointwise empirical mutual information test_empirical_mutual_information += -c + marginal_first_utterances_loglikelihood + marginal_last_utterance_loglikelihood test_pmi_list[(nxt-triples_in_batch):nxt] = (-c_list*words_in_triples + marginal_first_utterances_loglikelihood_list + marginal_last_utterance_loglikelihood_list)[0:triples_in_batch] # Compute genre specific stats... if compute_genre_specific_metrics: if triples_in_batch==batch['x'].shape[1]: mi_list = (-c_list*words_in_triples + marginal_first_utterances_loglikelihood_list + marginal_last_utterance_loglikelihood_list)[0:triples_in_batch] non_nan_entries = numpy.array(mi_list >= 0, dtype=int)*numpy.array(mi_list != numpy.nan, dtype=int) test_mi_per_genre += (numpy.asmatrix(non_nan_entries*mi_list) * numpy.asmatrix(x_semantic)).T test_triples_done_per_genre += numpy.reshape(numpy.sum(x_semantic, axis=0), test_triples_done_per_genre.shape) # Store log P(U_1, U_2) cost computed during mutual information test_cost_first_utterances += marginal_first_utterances_loglikelihood # Store marginal log P(U_3) test_cost_last_utterance_marginal += marginal_last_utterance_loglikelihood # Compute word-error rate for first utterances miscl_first_utterances, miscl_first_utterances_list = eval_misclass_batch(x_data, x_data_reversed, max_length, x_cost_mask_first_utterances, x_semantic) test_misclass_first_utterances += miscl_first_utterances if numpy.isinf(c) or numpy.isnan(c): continue # Store misclassification for last utterance miscl_first_utterances_list = miscl_first_utterances_list.reshape((batch['x'].shape[1],max_length), order=(1,0)) miscl_first_utterances_list = numpy.sum(miscl_first_utterances_list, axis=1) miscl_last_utterance_list = miscl_list - miscl_first_utterances_list test_misclass_last_utterance_list[(nxt-triples_in_batch):nxt] = miscl_last_utterance_list[0:triples_in_batch] if model.bootstrap_from_semantic_information: # Compute cross-entropy error on predicting the semantic class and retrieve predictions sem_eval = eval_semantic_batch(x_data, x_data_reversed, max_length, x_cost_mask, x_semantic) # Evaluate only non-empty triples (empty triples are created to fill # the whole batch sometimes). sem_cost = sem_eval[0][-1, :, :] test_semantic_cost += numpy.sum(sem_cost[x_semantic_nonempty_indices]) # Compute misclassified predictions on last timestep over all labels sem_preds = sem_eval[1][-1, :, :] sem_preds_misclass = len(numpy.where(((x_semantic-0.5)*(sem_preds-0.5))[x_semantic_nonempty_indices] < 0)[0]) test_semantic_misclass += sem_preds_misclass test_wordpreds_done += batch['num_preds'] test_wordpreds_done_last_utterance += batch['num_preds_at_utterance'] test_triples_done += batch['num_triples'] logger.debug("[TEST END]") test_cost_last_utterance_marginal /= test_wordpreds_done_last_utterance test_cost_last_utterance = (test_cost - test_cost_first_utterances) / test_wordpreds_done_last_utterance test_cost /= test_wordpreds_done test_cost_first_utterances /= float(test_wordpreds_done - test_wordpreds_done_last_utterance) test_misclass_last_utterance = float(test_misclass - test_misclass_first_utterances) / float(test_wordpreds_done_last_utterance) test_misclass_first_utterances /= float(test_wordpreds_done - test_wordpreds_done_last_utterance) test_misclass /= float(test_wordpreds_done) test_empirical_mutual_information /= float(test_triples_done) if model.bootstrap_from_semantic_information: test_semantic_cost /= float(test_triples_done) test_semantic_misclass /= float(test_done_triples) print "** test semantic cost = %.4f, test semantic misclass error = %.4f" % (float(test_semantic_cost), float(test_semantic_misclass)) print "** test cost (NLL) = %.4f, test word-perplexity = %.4f, test word-perplexity last utterance = %.4f, test word-perplexity marginal last utterance = %.4f, test mean word-error = %.4f, test mean word-error last utterance = %.4f, test emp. mutual information = %.4f" % (float(test_cost), float(math.exp(test_cost)), float(math.exp(test_cost_last_utterance)), float(math.exp(test_cost_last_utterance_marginal)), float(test_misclass), float(test_misclass_last_utterance), test_empirical_mutual_information) if compute_genre_specific_metrics: print '** test perplexity per genre', numpy.exp(test_cost_per_genre/test_wordpreds_done_per_genre) print '** test_mi_per_genre', test_mi_per_genre print '** words per genre', test_wordpreds_done_per_genre # Plot histogram over test costs if args.plot_graphs: try: pylab.figure() bins = range(0, 50, 1) pylab.hist(numpy.exp(test_cost_list), normed=1, histtype='bar') pylab.savefig(model.state['save_dir'] + '/' + model.state['run_id'] + "_" + model.state['prefix'] + 'Test_WordPerplexities.png') except: pass # Print 5 of 10% test samples with highest log-likelihood if args.plot_graphs: print " highest word log-likelihood test samples: " numpy.random.shuffle(test_lowest_triples) for i in range(test_extrema_samples_to_print): print " Sample: {}".format(" ".join(model.indices_to_words(numpy.ravel(test_lowest_triples[i,:])))) print " lowest word log-likelihood test samples: " numpy.random.shuffle(test_highest_triples) for i in range(test_extrema_samples_to_print): print " Sample: {}".format(" ".join(model.indices_to_words(numpy.ravel(test_highest_triples[i,:])))) # Plot histogram over empirical pointwise mutual informations if args.plot_graphs: try: pylab.figure() bins = range(0, 100, 1) pylab.hist(test_pmi_list, normed=1, histtype='bar') pylab.savefig(model.state['save_dir'] + '/' + model.state['run_id'] + "_" + model.state['prefix'] + 'Test_PMI.png') except: pass # To estimate the standard deviations, we assume that triples across documents (movies) are independent. # We compute the mean metric for each document, and then the variance between documents. # We then use the between document variance to compute the: # Let m be a metric: # Var[m] = Var[1/(words in total) \sum_d \sum_i m_{di}] # = Var[1/(words in total) \sum_d (words in doc d)/(words in doc d) \sum_i m_{di}] # = \sum_d (words in doc d)^2/(words in total)^2 Var [ 1/(words in doc d) \sum_i ] # = \sum_d (words in doc d)^2/(words in total)^2 sigma^2 # # where sigma^2 is the variance computed for the means across documents. # negative log-likelihood for each document (movie) per_document_test_cost = numpy.zeros((len(unique_document_ids)), dtype='float32') # negative log-likelihood for last utterance for each document (movie) per_document_test_cost_last_utterance = numpy.zeros((len(unique_document_ids)), dtype='float32') # misclassification error for each document (movie) per_document_test_misclass = numpy.zeros((len(unique_document_ids)), dtype='float32') # misclassification error for last utterance for each document (movie) per_document_test_misclass_last_utterance = numpy.zeros((len(unique_document_ids)), dtype='float32') # Compute standard deviations based on means across documents (sigma^2 above) all_words_squared = 0 # \sum_d (words in doc d)^2 all_words_in_last_utterance_squared = 0 # \sum_d (words in last utterance of doc d)^2 for doc_id in range(len(unique_document_ids)): doc_indices = numpy.where(document_ids == unique_document_ids[doc_id]) per_document_test_cost[doc_id] = numpy.sum(test_cost_list[doc_indices]) / numpy.sum(words_in_triples_list[doc_indices]) per_document_test_cost_last_utterance[doc_id] = numpy.sum(test_cost_last_utterance_marginal_list[doc_indices]) / numpy.sum(words_in_last_utterance_list[doc_indices]) per_document_test_misclass[doc_id] = numpy.sum(test_misclass_list[doc_indices]) / numpy.sum(words_in_triples_list[doc_indices]) per_document_test_misclass_last_utterance[doc_id] = numpy.sum(test_misclass_last_utterance_list[doc_indices]) / numpy.sum(words_in_last_utterance_list[doc_indices]) all_words_squared += float(numpy.sum(words_in_triples_list[doc_indices]))**2 all_words_in_last_utterance_squared += float(numpy.sum(words_in_last_utterance_list[doc_indices]))**2 # Sanity check that all documents are being used in the standard deviation calculations assert(numpy.sum(words_in_triples_list) == test_wordpreds_done) assert(numpy.sum(words_in_last_utterance_list) == test_wordpreds_done_last_utterance) # Compute final standard deviation equation and print the standard deviations per_document_test_cost_variance = numpy.var(per_document_test_cost) * float(all_words_squared) / float(test_wordpreds_done**2) per_document_test_cost_last_utterance_variance = numpy.var(per_document_test_cost_last_utterance) * float(all_words_in_last_utterance_squared) / float(test_wordpreds_done_last_utterance**2) per_document_test_misclass_variance = numpy.var(per_document_test_misclass) * float(all_words_squared) / float(test_wordpreds_done**2) per_document_test_misclass_last_utterance_variance = numpy.var(per_document_test_misclass_last_utterance) * float(all_words_in_last_utterance_squared) / float(test_wordpreds_done_last_utterance**2) print 'Standard deviations:' print "** test cost (NLL) = ", math.sqrt(per_document_test_cost_variance) print "** test perplexity (NLL) = ", math.sqrt((math.exp(per_document_test_cost_variance) - 1)*math.exp(2*test_cost+per_document_test_cost_variance)) print "** test cost last utterance (NLL) = ", math.sqrt(per_document_test_cost_last_utterance_variance) print "** test perplexity last utterance (NLL) = ", math.sqrt((math.exp(per_document_test_cost_last_utterance_variance) - 1)*math.exp(2*test_cost+per_document_test_cost_last_utterance_variance)) print "** test word-error = ", math.sqrt(per_document_test_misclass_variance) print "** test last utterance word-error = ", math.sqrt(per_document_test_misclass_last_utterance_variance) logger.debug("All done, exiting...")
def main(): args = parse_args() state = prototype_state() state_path = args.model_prefix + "_state.pkl" model_path = args.model_prefix + "_model.npz" with open(state_path) as src: state.update(pickle.load(src)) logging.basicConfig( level=getattr(logging, state['level']), format="%(asctime)s: %(name)s: %(levelname)s: %(message)s") model = DialogEncoderDecoder(state) if os.path.isfile(model_path): logger.debug("Loading previous model") model.load(model_path) else: raise Exception("Must specify a valid model path") eval_batch = model.build_eval_function() if args.test_path: state['test_dialogues'] = args.test_path # Initialize list of stopwords to remove if args.exclude_stop_words: logger.debug("Initializing stop-word list") stopwords_lowercase = stopwords.lower().split(' ') stopwords_indices = [] for word in stopwords_lowercase: if word in model.str_to_idx: stopwords_indices.append(model.str_to_idx[word]) test_data = get_test_iterator(state) test_data.start() # Load document ids if args.document_ids: labels_file = open(args.document_ids, 'r') labels_text = labels_file.readlines() document_ids = numpy.zeros((len(labels_text)), dtype='int32') for i in range(len(labels_text)): document_ids[i] = int(labels_text[i].split('\t')[0]) unique_document_ids = numpy.unique(document_ids) assert (test_data.data_len == document_ids.shape[0]) else: print( 'Warning no file with document ids given... standard deviations cannot be computed.' ) document_ids = numpy.zeros((test_data.data_len), dtype='int32') unique_document_ids = numpy.unique(document_ids) # Variables to store test statistics test_cost = 0 # negative log-likelihood test_wordpreds_done = 0 # number of words in total # Number of triples in dataset test_data_len = test_data.data_len max_stored_len = 160 # Maximum number of tokens to store for dialogues with highest and lowest validation errors logger.debug("[TEST START]") while True: batch = next(test_data) # Train finished if not batch: break logger.debug("[TEST] - Got batch %d,%d" % (batch['x'].shape[1], batch['max_length'])) x_data = batch['x'] x_data_reversed = batch['x_reversed'] max_length = batch['max_length'] x_cost_mask = batch['x_mask'] reset_mask = batch['x_reset'] ran_cost_utterance = batch['ran_var_constutterance'] ran_decoder_drop_mask = batch['ran_decoder_drop_mask'] if args.exclude_stop_words: for word_index in stopwords_indices: x_cost_mask[x_data == word_index] = 0 batch['num_preds'] = numpy.sum(x_cost_mask) c, _, c_list, _, _ = eval_batch(x_data, x_data_reversed, max_length, x_cost_mask, reset_mask, ran_cost_utterance, ran_decoder_drop_mask) c_list = c_list.reshape((batch['x'].shape[1], max_length - 1), order=(1, 0)) c_list = numpy.sum(c_list, axis=1) if numpy.isinf(c) or numpy.isnan(c): continue test_cost += c words_in_triples = numpy.sum(x_cost_mask, axis=0) if numpy.isinf(c) or numpy.isnan(c): continue if numpy.isinf(c) or numpy.isnan(c): continue test_wordpreds_done += batch['num_preds'] logger.debug("[TEST END]") print('test_wordpreds_done (number of words) ', test_wordpreds_done) test_cost /= test_wordpreds_done print("** test cost (NLL) = %.4f, test word-perplexity = %.4f " % (float(test_cost), float(math.exp(test_cost)))) logger.debug("All done, exiting...")
def main(): args = parse_args() state = prototype_state() state_path = args.model_prefix + "_state.pkl" model_path = args.model_prefix + "_model.npz" with open(state_path) as src: state.update(cPickle.load(src)) logging.basicConfig( level=getattr(logging, state['level']), format="%(asctime)s: %(name)s: %(levelname)s: %(message)s") model = DialogEncoderDecoder(state) if os.path.isfile(model_path): logger.debug("Loading previous model") model.load(model_path) else: raise Exception("Must specify a valid model path") eval_batch = model.build_eval_function() eval_misclass_batch = model.build_eval_misclassification_function() if args.test_path: state['test_triples'] = args.test_path # Initialize list of stopwords to remove if args.exclude_stop_words: logger.debug("Initializing stop-word list") stopwords_lowercase = stopwords.lower().split(' ') stopwords_indices = [] for word in stopwords_lowercase: if word in model.str_to_idx: stopwords_indices.append(model.str_to_idx[word]) test_data = get_test_iterator(state) test_data.start() # Load document ids if args.document_ids: labels_file = open(args.document_ids, 'r') labels_text = labels_file.readlines() document_ids = numpy.zeros((len(labels_text)), dtype='int32') for i in range(len(labels_text)): document_ids[i] = int(labels_text[i].split('\t')[0]) unique_document_ids = numpy.unique(document_ids) assert (test_data.data_len == document_ids.shape[0]) else: print 'Warning no file with document ids given... standard deviations cannot be computed.' document_ids = numpy.zeros((test_data.data_len), dtype='int32') unique_document_ids = numpy.unique(document_ids) # Variables to store test statistics test_cost = 0 # negative log-likelihood test_cost_first_utterances = 0 # marginal negative log-likelihood of first two utterances test_cost_last_utterance_marginal = 0 # marginal (approximate) negative log-likelihood of last utterances test_misclass = 0 # misclassification error-rate test_misclass_first_utterances = 0 # misclassification error-rate of first two utterances test_empirical_mutual_information = 0 # empirical mutual information between first two utterances and third utterance, where the marginal P(U_3) is approximated by P(U_3, empty, empty). if model.bootstrap_from_semantic_information: test_semantic_cost = 0 test_semantic_misclass = 0 test_wordpreds_done = 0 # number of words in total test_wordpreds_done_last_utterance = 0 # number of words in last utterances test_triples_done = 0 # number of triples evaluated # Variables to compute negative log-likelihood and empirical mutual information per genre compute_genre_specific_metrics = False if hasattr(model, 'semantic_information_dim'): compute_genre_specific_metrics = True test_cost_per_genre = numpy.zeros((model.semantic_information_dim, 1), dtype='float32') test_mi_per_genre = numpy.zeros((model.semantic_information_dim, 1), dtype='float32') test_wordpreds_done_per_genre = numpy.zeros( (model.semantic_information_dim, 1), dtype='float32') test_triples_done_per_genre = numpy.zeros( (model.semantic_information_dim, 1), dtype='float32') # Number of triples in dataset test_data_len = test_data.data_len # Correspond to the same variables as above, but now for each triple. # e.g. test_cost_list is a numpy array with the negative log-likelihood for each triple in the test set test_cost_list = numpy.zeros((test_data_len, )) test_pmi_list = numpy.zeros((test_data_len, )) test_cost_last_utterance_marginal_list = numpy.zeros((test_data_len, )) test_misclass_list = numpy.zeros((test_data_len, )) test_misclass_last_utterance_list = numpy.zeros((test_data_len, )) # Array containing number of words in each triple words_in_triples_list = numpy.zeros((test_data_len, )) # Array containing number of words in last utterance of each triple words_in_last_utterance_list = numpy.zeros((test_data_len, )) # Prepare variables for printing the test examples the model performs best and worst on test_extrema_setsize = min(state['track_extrema_samples_count'], test_data_len) test_extrema_samples_to_print = min(state['print_extrema_samples_count'], test_extrema_setsize) test_lowest_costs = numpy.ones((test_extrema_setsize, )) * 1000 test_lowest_triples = numpy.ones( (test_extrema_setsize, state['seqlen'])) * 1000 test_highest_costs = numpy.ones((test_extrema_setsize, )) * (-1000) test_highest_triples = numpy.ones( (test_extrema_setsize, state['seqlen'])) * (-1000) logger.debug("[TEST START]") while True: batch = test_data.next() # Train finished if not batch: break logger.debug("[TEST] - Got batch %d,%d" % (batch['x'].shape[1], batch['max_length'])) x_data = batch['x'] x_data_reversed = batch['x_reversed'] max_length = batch['max_length'] x_cost_mask = batch['x_mask'] x_semantic = batch['x_semantic'] x_semantic_nonempty_indices = numpy.where(x_semantic >= 0) # Hack to get rid of start of sentence token. if args.exclude_sos and model.sos_sym != -1: x_cost_mask[x_data == model.sos_sym] = 0 if args.exclude_stop_words: for word_index in stopwords_indices: x_cost_mask[x_data == word_index] = 0 batch['num_preds'] = numpy.sum(x_cost_mask) c, c_list = eval_batch(x_data, x_data_reversed, max_length, x_cost_mask, x_semantic) c_list = c_list.reshape((batch['x'].shape[1], max_length), order=(1, 0)) c_list = numpy.sum(c_list, axis=1) # Compute genre specific stats... if compute_genre_specific_metrics: non_nan_entries = numpy.array(c_list >= 0, dtype=int) c_list[numpy.where(non_nan_entries == 0)] = 0 test_cost_per_genre += (numpy.asmatrix(non_nan_entries * c_list) * numpy.asmatrix(x_semantic)).T test_wordpreds_done_per_genre += (numpy.asmatrix( non_nan_entries * numpy.sum(x_cost_mask, axis=0)) * numpy.asmatrix(x_semantic)).T if numpy.isinf(c) or numpy.isnan(c): continue test_cost += c # Store test costs in list nxt = min((test_triples_done + batch['x'].shape[1]), test_data_len) triples_in_batch = nxt - test_triples_done words_in_triples = numpy.sum(x_cost_mask, axis=0) words_in_triples_list[( nxt - triples_in_batch):nxt] = words_in_triples[0:triples_in_batch] # We don't need to normalzie by the number of words... not if we're computing standard deviations at least... test_cost_list[(nxt - triples_in_batch):nxt] = c_list[0:triples_in_batch] # Store best and worst test costs con_costs = numpy.concatenate( [test_lowest_costs, c_list[0:triples_in_batch]]) con_triples = numpy.concatenate( [test_lowest_triples, x_data[:, 0:triples_in_batch].T], axis=0) con_indices = con_costs.argsort()[0:test_extrema_setsize][::1] test_lowest_costs = con_costs[con_indices] test_lowest_triples = con_triples[con_indices] con_costs = numpy.concatenate( [test_highest_costs, c_list[0:triples_in_batch]]) con_triples = numpy.concatenate( [test_highest_triples, x_data[:, 0:triples_in_batch].T], axis=0) con_indices = con_costs.argsort()[-test_extrema_setsize:][::-1] test_highest_costs = con_costs[con_indices] test_highest_triples = con_triples[con_indices] # Compute word-error rate miscl, miscl_list = eval_misclass_batch(x_data, x_data_reversed, max_length, x_cost_mask, x_semantic) if numpy.isinf(c) or numpy.isnan(c): continue test_misclass += miscl # Store misclassification errors in list miscl_list = miscl_list.reshape((batch['x'].shape[1], max_length), order=(1, 0)) miscl_list = numpy.sum(miscl_list, axis=1) test_misclass_list[( nxt - triples_in_batch):nxt] = miscl_list[0:triples_in_batch] # Equations to compute empirical mutual information # Compute marginal log-likelihood of last utterance in triple: # We approximate it with the margina log-probabiltiy of the utterance being observed first in the triple x_data_last_utterance = batch['x_last_utterance'] x_data_last_utterance_reversed = batch['x_last_utterance_reversed'] x_cost_mask_last_utterance = batch['x_mask_last_utterance'] x_start_of_last_utterance = batch['x_start_of_last_utterance'] # Hack to get rid of start of sentence token. if args.exclude_sos and model.sos_sym != -1: x_cost_mask_last_utterance[x_data_last_utterance == model.sos_sym] = 0 if args.exclude_stop_words: for word_index in stopwords_indices: x_cost_mask_last_utterance[x_data_last_utterance == word_index] = 0 words_in_last_utterance = numpy.sum(x_cost_mask_last_utterance, axis=0) words_in_last_utterance_list[( nxt - triples_in_batch ):nxt] = words_in_last_utterance[0:triples_in_batch] batch['num_preds_at_utterance'] = numpy.sum(x_cost_mask_last_utterance) marginal_last_utterance_loglikelihood, marginal_last_utterance_loglikelihood_list = eval_batch( x_data_last_utterance, x_data_last_utterance_reversed, max_length, x_cost_mask_last_utterance, x_semantic) marginal_last_utterance_loglikelihood_list = marginal_last_utterance_loglikelihood_list.reshape( (batch['x'].shape[1], max_length), order=(1, 0)) marginal_last_utterance_loglikelihood_list = numpy.sum( marginal_last_utterance_loglikelihood_list, axis=1) test_cost_last_utterance_marginal_list[( nxt - triples_in_batch ):nxt] = marginal_last_utterance_loglikelihood_list[0:triples_in_batch] # Compute marginal log-likelihood of first utterances in triple by masking the last utterance x_cost_mask_first_utterances = numpy.copy(x_cost_mask) for i in range(batch['x'].shape[1]): x_cost_mask_first_utterances[ x_start_of_last_utterance[i]:max_length, i] = 0 marginal_first_utterances_loglikelihood, marginal_first_utterances_loglikelihood_list = eval_batch( x_data, x_data_reversed, max_length, x_cost_mask_first_utterances, x_semantic) marginal_first_utterances_loglikelihood_list = marginal_first_utterances_loglikelihood_list.reshape( (batch['x'].shape[1], max_length), order=(1, 0)) marginal_first_utterances_loglikelihood_list = numpy.sum( marginal_first_utterances_loglikelihood_list, axis=1) # Compute empirical mutual information and pointwise empirical mutual information test_empirical_mutual_information += -c + marginal_first_utterances_loglikelihood + marginal_last_utterance_loglikelihood test_pmi_list[(nxt - triples_in_batch):nxt] = ( -c_list * words_in_triples + marginal_first_utterances_loglikelihood_list + marginal_last_utterance_loglikelihood_list)[0:triples_in_batch] # Compute genre specific stats... if compute_genre_specific_metrics: if triples_in_batch == batch['x'].shape[1]: mi_list = (-c_list * words_in_triples + marginal_first_utterances_loglikelihood_list + marginal_last_utterance_loglikelihood_list )[0:triples_in_batch] non_nan_entries = numpy.array( mi_list >= 0, dtype=int) * numpy.array( mi_list != numpy.nan, dtype=int) test_mi_per_genre += ( numpy.asmatrix(non_nan_entries * mi_list) * numpy.asmatrix(x_semantic)).T test_triples_done_per_genre += numpy.reshape( numpy.sum(x_semantic, axis=0), test_triples_done_per_genre.shape) # Store log P(U_1, U_2) cost computed during mutual information test_cost_first_utterances += marginal_first_utterances_loglikelihood # Store marginal log P(U_3) test_cost_last_utterance_marginal += marginal_last_utterance_loglikelihood # Compute word-error rate for first utterances miscl_first_utterances, miscl_first_utterances_list = eval_misclass_batch( x_data, x_data_reversed, max_length, x_cost_mask_first_utterances, x_semantic) test_misclass_first_utterances += miscl_first_utterances if numpy.isinf(c) or numpy.isnan(c): continue # Store misclassification for last utterance miscl_first_utterances_list = miscl_first_utterances_list.reshape( (batch['x'].shape[1], max_length), order=(1, 0)) miscl_first_utterances_list = numpy.sum(miscl_first_utterances_list, axis=1) miscl_last_utterance_list = miscl_list - miscl_first_utterances_list test_misclass_last_utterance_list[( nxt - triples_in_batch ):nxt] = miscl_last_utterance_list[0:triples_in_batch] if model.bootstrap_from_semantic_information: # Compute cross-entropy error on predicting the semantic class and retrieve predictions sem_eval = eval_semantic_batch(x_data, x_data_reversed, max_length, x_cost_mask, x_semantic) # Evaluate only non-empty triples (empty triples are created to fill # the whole batch sometimes). sem_cost = sem_eval[0][-1, :, :] test_semantic_cost += numpy.sum( sem_cost[x_semantic_nonempty_indices]) # Compute misclassified predictions on last timestep over all labels sem_preds = sem_eval[1][-1, :, :] sem_preds_misclass = len( numpy.where( ((x_semantic - 0.5) * (sem_preds - 0.5))[x_semantic_nonempty_indices] < 0)[0]) test_semantic_misclass += sem_preds_misclass test_wordpreds_done += batch['num_preds'] test_wordpreds_done_last_utterance += batch['num_preds_at_utterance'] test_triples_done += batch['num_triples'] logger.debug("[TEST END]") test_cost_last_utterance_marginal /= test_wordpreds_done_last_utterance test_cost_last_utterance = (test_cost - test_cost_first_utterances ) / test_wordpreds_done_last_utterance test_cost /= test_wordpreds_done test_cost_first_utterances /= float(test_wordpreds_done - test_wordpreds_done_last_utterance) test_misclass_last_utterance = float( test_misclass - test_misclass_first_utterances) / float( test_wordpreds_done_last_utterance) test_misclass_first_utterances /= float(test_wordpreds_done - test_wordpreds_done_last_utterance) test_misclass /= float(test_wordpreds_done) test_empirical_mutual_information /= float(test_triples_done) if model.bootstrap_from_semantic_information: test_semantic_cost /= float(test_triples_done) test_semantic_misclass /= float(test_done_triples) print "** test semantic cost = %.4f, test semantic misclass error = %.4f" % ( float(test_semantic_cost), float(test_semantic_misclass)) print "** test cost (NLL) = %.4f, test word-perplexity = %.4f, test word-perplexity last utterance = %.4f, test word-perplexity marginal last utterance = %.4f, test mean word-error = %.4f, test mean word-error last utterance = %.4f, test emp. mutual information = %.4f" % ( float(test_cost), float( math.exp(test_cost)), float(math.exp(test_cost_last_utterance)), float( math.exp(test_cost_last_utterance_marginal)), float(test_misclass), float(test_misclass_last_utterance), test_empirical_mutual_information) if compute_genre_specific_metrics: print '** test perplexity per genre', numpy.exp( test_cost_per_genre / test_wordpreds_done_per_genre) print '** test_mi_per_genre', test_mi_per_genre print '** words per genre', test_wordpreds_done_per_genre # Plot histogram over test costs if args.plot_graphs: try: pylab.figure() bins = range(0, 50, 1) pylab.hist(numpy.exp(test_cost_list), normed=1, histtype='bar') pylab.savefig(model.state['save_dir'] + '/' + model.state['run_id'] + "_" + model.state['prefix'] + 'Test_WordPerplexities.png') except: pass # Print 5 of 10% test samples with highest log-likelihood if args.plot_graphs: print " highest word log-likelihood test samples: " numpy.random.shuffle(test_lowest_triples) for i in range(test_extrema_samples_to_print): print " Sample: {}".format(" ".join( model.indices_to_words(numpy.ravel( test_lowest_triples[i, :])))) print " lowest word log-likelihood test samples: " numpy.random.shuffle(test_highest_triples) for i in range(test_extrema_samples_to_print): print " Sample: {}".format(" ".join( model.indices_to_words(numpy.ravel( test_highest_triples[i, :])))) # Plot histogram over empirical pointwise mutual informations if args.plot_graphs: try: pylab.figure() bins = range(0, 100, 1) pylab.hist(test_pmi_list, normed=1, histtype='bar') pylab.savefig(model.state['save_dir'] + '/' + model.state['run_id'] + "_" + model.state['prefix'] + 'Test_PMI.png') except: pass # To estimate the standard deviations, we assume that triples across documents (movies) are independent. # We compute the mean metric for each document, and then the variance between documents. # We then use the between document variance to compute the: # Let m be a metric: # Var[m] = Var[1/(words in total) \sum_d \sum_i m_{di}] # = Var[1/(words in total) \sum_d (words in doc d)/(words in doc d) \sum_i m_{di}] # = \sum_d (words in doc d)^2/(words in total)^2 Var [ 1/(words in doc d) \sum_i ] # = \sum_d (words in doc d)^2/(words in total)^2 sigma^2 # # where sigma^2 is the variance computed for the means across documents. # negative log-likelihood for each document (movie) per_document_test_cost = numpy.zeros((len(unique_document_ids)), dtype='float32') # negative log-likelihood for last utterance for each document (movie) per_document_test_cost_last_utterance = numpy.zeros( (len(unique_document_ids)), dtype='float32') # misclassification error for each document (movie) per_document_test_misclass = numpy.zeros((len(unique_document_ids)), dtype='float32') # misclassification error for last utterance for each document (movie) per_document_test_misclass_last_utterance = numpy.zeros( (len(unique_document_ids)), dtype='float32') # Compute standard deviations based on means across documents (sigma^2 above) all_words_squared = 0 # \sum_d (words in doc d)^2 all_words_in_last_utterance_squared = 0 # \sum_d (words in last utterance of doc d)^2 for doc_id in range(len(unique_document_ids)): doc_indices = numpy.where(document_ids == unique_document_ids[doc_id]) per_document_test_cost[doc_id] = numpy.sum( test_cost_list[doc_indices]) / numpy.sum( words_in_triples_list[doc_indices]) per_document_test_cost_last_utterance[doc_id] = numpy.sum( test_cost_last_utterance_marginal_list[doc_indices]) / numpy.sum( words_in_last_utterance_list[doc_indices]) per_document_test_misclass[doc_id] = numpy.sum( test_misclass_list[doc_indices]) / numpy.sum( words_in_triples_list[doc_indices]) per_document_test_misclass_last_utterance[doc_id] = numpy.sum( test_misclass_last_utterance_list[doc_indices]) / numpy.sum( words_in_last_utterance_list[doc_indices]) all_words_squared += float( numpy.sum(words_in_triples_list[doc_indices]))**2 all_words_in_last_utterance_squared += float( numpy.sum(words_in_last_utterance_list[doc_indices]))**2 # Sanity check that all documents are being used in the standard deviation calculations assert (numpy.sum(words_in_triples_list) == test_wordpreds_done) assert (numpy.sum(words_in_last_utterance_list) == test_wordpreds_done_last_utterance) # Compute final standard deviation equation and print the standard deviations per_document_test_cost_variance = numpy.var( per_document_test_cost) * float(all_words_squared) / float( test_wordpreds_done**2) per_document_test_cost_last_utterance_variance = numpy.var( per_document_test_cost_last_utterance) * float( all_words_in_last_utterance_squared) / float( test_wordpreds_done_last_utterance**2) per_document_test_misclass_variance = numpy.var( per_document_test_misclass) * float(all_words_squared) / float( test_wordpreds_done**2) per_document_test_misclass_last_utterance_variance = numpy.var( per_document_test_misclass_last_utterance) * float( all_words_in_last_utterance_squared) / float( test_wordpreds_done_last_utterance**2) print 'Standard deviations:' print "** test cost (NLL) = ", math.sqrt(per_document_test_cost_variance) print "** test perplexity (NLL) = ", math.sqrt( (math.exp(per_document_test_cost_variance) - 1) * math.exp(2 * test_cost + per_document_test_cost_variance)) print "** test cost last utterance (NLL) = ", math.sqrt( per_document_test_cost_last_utterance_variance) print "** test perplexity last utterance (NLL) = ", math.sqrt( (math.exp(per_document_test_cost_last_utterance_variance) - 1) * math.exp(2 * test_cost + per_document_test_cost_last_utterance_variance)) print "** test word-error = ", math.sqrt( per_document_test_misclass_variance) print "** test last utterance word-error = ", math.sqrt( per_document_test_misclass_last_utterance_variance) logger.debug("All done, exiting...")
def main(): args = parse_args() state = prototype_state() state_path = args.model_prefix + "_state.pkl" model_path = args.model_prefix + "_model.npz" with open(state_path) as src: state.update(cPickle.load(src)) logging.basicConfig(level=getattr(logging, state['level']), format="%(asctime)s: %(name)s: %(levelname)s: %(message)s") model = DialogEncoderDecoder(state) if os.path.isfile(model_path): logger.debug("Loading previous model") model.load(model_path) else: raise Exception("Must specify a valid model path") eval_batch = model.build_eval_function() if args.test_path: state['test_dialogues'] = args.test_path # Initialize list of stopwords to remove if args.exclude_stop_words: logger.debug("Initializing stop-word list") stopwords_lowercase = stopwords.lower().split(' ') stopwords_indices = [] for word in stopwords_lowercase: if word in model.str_to_idx: stopwords_indices.append(model.str_to_idx[word]) test_data = get_test_iterator(state) test_data.start() # Load document ids if args.document_ids: labels_file = open(args.document_ids, 'r') labels_text = labels_file.readlines() document_ids = numpy.zeros((len(labels_text)), dtype='int32') for i in range(len(labels_text)): document_ids[i] = int(labels_text[i].split('\t')[0]) unique_document_ids = numpy.unique(document_ids) assert(test_data.data_len == document_ids.shape[0]) else: print 'Warning no file with document ids given... standard deviations cannot be computed.' document_ids = numpy.zeros((test_data.data_len), dtype='int32') unique_document_ids = numpy.unique(document_ids) # Variables to store test statistics test_cost = 0 # negative log-likelihood test_wordpreds_done = 0 # number of words in total # Number of triples in dataset test_data_len = test_data.data_len max_stored_len = 160 # Maximum number of tokens to store for dialogues with highest and lowest validation errors logger.debug("[TEST START]") while True: batch = test_data.next() # Train finished if not batch: break logger.debug("[TEST] - Got batch %d,%d" % (batch['x'].shape[1], batch['max_length'])) x_data = batch['x'] x_data_reversed = batch['x_reversed'] max_length = batch['max_length'] x_cost_mask = batch['x_mask'] x_semantic = batch['x_semantic'] reset_mask = batch['x_reset'] ran_cost_utterance = batch['ran_var_constutterance'] ran_decoder_drop_mask = batch['ran_decoder_drop_mask'] if args.exclude_stop_words: for word_index in stopwords_indices: x_cost_mask[x_data == word_index] = 0 batch['num_preds'] = numpy.sum(x_cost_mask) c, c_list, _, _ = eval_batch(x_data, x_data_reversed, max_length, x_cost_mask, x_semantic, reset_mask, ran_cost_utterance, ran_decoder_drop_mask) c_list = c_list.reshape((batch['x'].shape[1],max_length-1), order=(1,0)) c_list = numpy.sum(c_list, axis=1) if numpy.isinf(c) or numpy.isnan(c): continue test_cost += c words_in_triples = numpy.sum(x_cost_mask, axis=0) if numpy.isinf(c) or numpy.isnan(c): continue if numpy.isinf(c) or numpy.isnan(c): continue test_wordpreds_done += batch['num_preds'] logger.debug("[TEST END]") print 'test_wordpreds_done (number of words) ', test_wordpreds_done test_cost /= test_wordpreds_done print "** test cost (NLL) = %.4f, test word-perplexity = %.4f " % (float(test_cost), float(math.exp(test_cost))) logger.debug("All done, exiting...")
def main(): args = parse_args() state = prototype_state() state_path = args.model_prefix + "_state.pkl" model_path = args.model_prefix + "_model.npz" with open(state_path) as src: state.update(cPickle.load(src)) logging.basicConfig(level=getattr(logging, state['level']), format="%(asctime)s: %(name)s: %(levelname)s: %(message)s") # Force batch size to be one, so that we can condition the prediction at time t on its prediction at time t-1. state['bs'] = 1 model = DialogEncoderDecoder(state) if os.path.isfile(model_path): logger.debug("Loading previous model") model.load(model_path) else: raise Exception("Must specify a valid model path") eval_batch = model.build_eval_function() if args.test_path: state['test_dialogues'] = args.test_path sentence_break_symbols = [model.str_to_idx['.'], model.str_to_idx['?'], model.str_to_idx['!']] test_data = get_test_iterator(state, sentence_break_symbols) test_data.start() tokens_per_sample = 3 # Load document ids if args.document_ids: print("Warning. Evaluation using document ids is not supported") labels_file = open(args.document_ids, 'r') labels_text = labels_file.readlines() document_ids = numpy.zeros((len(labels_text)), dtype='int32') for i in range(len(labels_text)): document_ids[i] = int(labels_text[i].split('\t')[0]) unique_document_ids = numpy.unique(document_ids) assert(test_data.data_len == document_ids.shape[0]) else: document_ids = numpy.zeros((test_data.data_len), dtype='int32') unique_document_ids = numpy.unique(document_ids) # Variables to store test statistics test_cost = 0 # negative log-likelihood test_misclass_first = 0 # misclassification error-rate test_misclass_second = 0 # misclassification error-rate test_samples_done = 0 # number of examples evaluated # Number of examples in dataset test_data_len = test_data.data_len logger.debug("[TEST START]") prev_doc_id = -1 prev_predicted_speaker = 4 while True: batch = test_data.next() # Train finished if not batch: break logger.debug("[TEST] - Got batch %d,%d" % (batch['x_prev'].shape[1], batch['max_length'])) x_data_prev = batch['x_prev'] x_mask_prev = batch['x_mask_prev'] x_data_next = batch['x_next'] x_mask_next = batch['x_mask_next'] x_precomputed_features = batch['x_precomputed_features'] y_data = batch['y'] y_data_prev_true = batch['y_prev'] x_max_length = batch['max_length'] doc_id = batch['document_id'][0] y_data_prev_estimate = numpy.zeros((2, 1), dtype='int32') # If we continue in the same dialogue, use previous prediction to inform current prediction if prev_doc_id == doc_id: y_data_prev_estimate[0,0] = prev_predicted_speaker else: # Otherwise, we assume the previous (non-existing utterance) was labelled as "minor_speaker" y_data_prev_estimate[0,0] = 4 #print 'y_data_prev_estimate', y_data_prev_estimate #print 'y_data_prev_true', y_data_prev_true c, _, miscl_first, miscl_second, training_preds_first, training_preds_second = eval_batch(x_data_prev, x_mask_prev, x_data_next, x_mask_next, x_precomputed_features, y_data, y_data_prev_estimate, x_max_length) prev_doc_id = doc_id prev_predicted_speaker = training_preds_second[0] test_cost += c test_misclass_first += miscl_first test_misclass_second += miscl_second test_samples_done += batch['num_samples'] logger.debug("[TEST END]") test_cost /= float(test_samples_done*tokens_per_sample) test_misclass_first /= float(test_samples_done) test_misclass_second /= float(test_samples_done) print "** test cost (NLL) = %.4f, valid word-perplexity = %.4f, valid mean turn-taking class error = %.4f, valid mean speaker class error = %.4f" % (float(test_cost), float(math.exp(test_cost)), float(test_misclass_first), float(test_misclass_second)) logger.debug("All done, exiting...")