コード例 #1
0
ファイル: missing_ids.py プロジェクト: rrosiek/pc_data_load
    def __init__(self):
        self.missing_ids = {}
        self.new_ids = {}
        self.data_utils = DataUtils()
        self.data_loader_utils = DataLoaderUtils(SERVER, OLD_INDEX, OLD_TYPE,
                                                 '', '')

        self.docs_for_dolan = {}
コード例 #2
0
    def __init__(self, ct_load_config):
        self.ct_load_config = ct_load_config
        self.pubmed_load_config = self.get_pubmed_load_config()

        self.pubmed_relations = {}
        self.ct_relations = {}

        self.processed_docs = 0
        self.data_utils = DataUtils()
コード例 #3
0
ファイル: doc_processor.py プロジェクト: rrosiek/pc_data_load
    def __init__(self, server, index, type):
        self.server = server
        self.src_index = src_index
        self.src_type = src_type

        self.docs_with_issues = {}
        self.processed_docs = 0

        self.data_utils = DataUtils()
コード例 #4
0
    def __init__(self, src_server, dest_server, src_index, src_type, dst_index, dst_type, username, password):
        self.src_data_loader_utils = DataLoaderUtils(src_server, src_index, src_type)
        self.dest_data_loader_utils = DataLoaderUtils(dest_server, dst_index, dst_type)

        self.data_utils = DataUtils()

        self.username = username
        self.password = password

        file_utils.make_directory(TEMP_DIR)
コード例 #5
0
ファイル: copy_docs.py プロジェクト: rrosiek/pc_data_load
    def __init__(self, src_server, dest_server, src_index, src_type, dst_index,
                 dst_type):
        self.src_data_loader_utils = DataLoaderUtils(src_server, src_index,
                                                     src_type)
        self.dest_data_loader_utils = DataLoaderUtils(dest_server, dst_index,
                                                      dst_type)

        self.processed_doc_count = 0
        self.total_doc_count = 0

        self.data_utils = DataUtils()
コード例 #6
0
    def __init__(self, server, src_index, src_type, process_doc_method):
        self.server = server
        self.index = src_index
        self.type = src_type
        self.process_doc_method = process_doc_method

        self.batch_size = 5000
        self.process_count = 2
        self.process_spawn_delay = 0.15
        self.bulk_data_size = 300000

        self.data_loader_utils = DataLoaderUtils(self.server, self.index,
                                                 self.type)

        self.data_utils = DataUtils()
コード例 #7
0
    def __init__(self, load_config, data_source, data_source_summary):
        super(PubmedRelationshipProcessor,
              self).__init__(load_config, data_source)
        self.data_source_summary = data_source_summary
        self.data_loader_utils = DataLoaderUtils(
            self.load_config.server, self.load_config.index,
            self.load_config.type, self.load_config.server_username,
            self.load_config.server_password)
        self.load_relationships = True

        self.docs_with_new_citations = {}
        self.docs_citations_history = {}

        self.existing_docs = {}

        self.data_utils = DataUtils()
コード例 #8
0
    def run(self):
        doc_ids = get_doc_ids(
            server=self.load_config.server,
            src_index=self.load_config.index,
            src_type=self.load_config.type,
            dest_dir=self.load_config.other_files_directory(),
            dest_file_name="INITIAL_GRANT_ALL_IRDB_IDS.json")

        doc_ids = doc_ids.keys()

        self.total_doc_count = len(doc_ids)

        data_utils = DataUtils()
        data_utils.batch_fetch_docs_for_ids(base_url=self.load_config.server,
                                            ids=doc_ids,
                                            index=self.load_config.index,
                                            type=self.load_config.type,
                                            docs_fetched=self.docs_fetched)

        self.process_grant_num_groups()
コード例 #9
0
    def __init__(self, src_server, dest_server, src_index, src_type, dst_index,
                 dst_type, username, password):
        self.src_data_loader_utils = DataLoaderUtils(src_server, src_index,
                                                     src_type)
        self.dest_data_loader_utils = DataLoaderUtils(dest_server, dst_index,
                                                      dst_type)

        self.processed_doc_count = 0
        self.total_doc_count = 0

        self.data_utils = DataUtils()

        self.relations_to_exclude = []
        self.missing_destination_ids = []

        self.username = username
        self.password = password

        self.last_time_stamp = 0
        self.diff_average = 0
コード例 #10
0
ファイル: doc_processor.py プロジェクト: rrosiek/pc_data_load
class DocProcessor(object):
    def __init__(self, server, index, type):
        self.server = server
        self.src_index = src_index
        self.src_type = src_type

        self.docs_with_issues = {}
        self.processed_docs = 0

        self.data_utils = DataUtils()

    def run(self):
        self.processed_docs = 0
        query = {"match_all": {}}
        self.data_utils.batch_fetch_ids_for_query(base_url=self.server,
                                                  index=self.src_index,
                                                  type=self.src_type,
                                                  query=query,
                                                  ids_fetched=self.ids_fetched)

    def docs_fetched(self, docs, index, type):
        for doc in docs:
            self.process_doc(doc)

    def process_doc(self, doc):
        pass

    def ids_fetched(self, ids, index, type):
        self.data_utils.batch_fetch_docs_for_ids(
            base_url=self.server,
            ids=ids,
            index=self.src_index,
            type=self.src_type,
            docs_fetched=self.docs_fetched)


# def start():
#     doc_processor = DocProcessor(LOCAL_SERVER, 'pubmed2018_v5', 'article')
#     doc_processor.run()
コード例 #11
0
 def batch_fetch_docs(self, ids, index_id):
     data_utils = DataUtils()
     if index_id == ID_IRDB:
         data_utils.batch_fetch_docs_for_ids(LOCAL_SERVER, ids, INDEX, TYPE,
                                             self.docs_fetched_irdb, 1000)
     elif index_id == ID_PUBMED:
         data_utils.batch_fetch_docs_for_ids(
             SERVER, ids, INDEX_MAPPING[index_id]['index'],
             INDEX_MAPPING[index_id]['type'], self.docs_fetched_pubmed,
             1000)
コード例 #12
0
class ProcessIndex(object):
    def __init__(self, server, src_index, src_type, process_doc_method):
        self.server = server
        self.index = src_index
        self.type = src_type
        self.process_doc_method = process_doc_method

        self.batch_size = 5000
        self.process_count = 2
        self.process_spawn_delay = 0.15
        self.bulk_data_size = 300000

        self.data_loader_utils = DataLoaderUtils(self.server, self.index,
                                                 self.type)

        self.data_utils = DataUtils()

    def run(self):
        # doc_ids = export_doc_ids( self.server, self.index,
        #                             self.type, self.index + '_' + self.type , 'doc_ids.json')

        doc_ids = file_utils.load_file(self.index, self.index + '_ids.json')

        if len(doc_ids) == 0:
            doc_ids = export_doc_ids.export_doc_ids(self.server, self.index,
                                                    self.type)

        doc_ids = doc_ids.keys()

        batch_doc_processor = BatchDocProcessor(doc_ids, self.process_batch,
                                                self.batch_size,
                                                self.process_count,
                                                self.process_spawn_delay)
        batch_doc_processor.run()

    def docs_fetched(self, docs, index, type):
        docs_to_process = {}

        print 'Docs fetched', len(docs)
        for doc in docs:
            _id = doc['_id']
            if '_source' in doc:
                existing_doc = doc['_source']
                docs_to_process[_id] = existing_doc

        self.process_docs(docs_to_process)

    def process_docs(self, docs):
        bulk_data = ''

        for _id in docs:
            doc = docs[_id]

            processed_doc = self.process_doc_method(_id, doc)

            if processed_doc is not None:
                bulk_data += self.data_loader_utils.bulk_update_header(_id)
                bulk_data += '\n'
                updated_doc = {'doc': processed_doc}
                bulk_data += json.dumps(updated_doc)
                bulk_data += '\n'

            if len(bulk_data) >= self.bulk_data_size:
                # print 'loading bulk data...'
                self.load_bulk_data(bulk_data)
                bulk_data = ''

        if len(bulk_data) > 0:
            # print 'loading bulk data...'
            self.load_bulk_data(bulk_data)

    def load_bulk_data(self, bulk_data):
        self.data_loader_utils.load_bulk_data(bulk_data)
        # pass

    def process_batch(self, doc_ids):
        self.data_utils.batch_fetch_docs_for_ids(
            base_url=self.server,
            ids=doc_ids,
            index=self.index,
            type=self.type,
            docs_fetched=self.docs_fetched)
コード例 #13
0
class CopyGrants(object):

    def __init__(self, src_server, dest_server, src_index, src_type, dst_index, dst_type, username, password):
        self.src_data_loader_utils = DataLoaderUtils(src_server, src_index, src_type)
        self.dest_data_loader_utils = DataLoaderUtils(dest_server, dst_index, dst_type)

        self.data_utils = DataUtils()

        self.username = username
        self.password = password

        file_utils.make_directory(TEMP_DIR)

    def run(self):
        self.process_batches()

    def process_batches(self):
        batch_file_names = []
        for batch_file_name in os.listdir(TEMP_DIR):
            file_path = os.path.join(TEMP_DIR, batch_file_name)
            if os.path.isfile(file_path) and batch_file_name.startswith('batch_'):
                batch_file_names.append(batch_file_name)

        print "Generated ", len(batch_file_names), 'batch file names'

        batch_file_names.sort()

        if len(batch_file_names) == 0:
            batch_file_names = self.split_to_batches()

        print len(batch_file_names)
        raw_input('Continue?')

        processed_batches = file_utils.load_file(TEMP_DIR, 'processed_pubmed2018_docs_with_grants_batches.json')
        for batch_file_name in batch_file_names:
            if batch_file_name not in processed_batches:
                print 'Loading batch', batch_file_name
                batch = file_utils.load_file(TEMP_DIR, batch_file_name)
                self.copy_docs_batch(batch)
                processed_batches[batch_file_name] = 0
                file_utils.save_file(TEMP_DIR, 'processed_pubmed2018_docs_with_grants_batches.json', processed_batches)

    def split_to_batches(self):
        server = self.src_data_loader_utils.server
        src_index = self.src_data_loader_utils.index
        src_type = self.src_data_loader_utils.type

        print 'Fetching doc ids for', src_index, src_type
        query = {
            "nested": {
                "path": "grants",
                "query": {
                    "bool": {
                        "must": [
                            {
                                "exists": {
                                    "field": "grants"
                                }
                            }
                        ]
                    }
                }
            }
        }

        all_pubmed_ids = export_doc_ids.get_doc_ids(server,
                                                    src_index,
                                                    src_type,
                                                    TEMP_DIR,
                                                    'pubmed2018_docs_with_grants.json', query=query)
        # all_pubmed_ids = all_pubmed_ids.keys()
        # all_pubmed_ids.sort()
        self.total_doc_count = len(all_pubmed_ids)  

        max_batch_count = 5000
        
        batch_file_names = []
        batch_index = 0
        batch_ids = []
        # Splitting into batches
        for _id in all_pubmed_ids:
            batch_ids.append(_id)

            if len(batch_ids) >= max_batch_count:
                print 'Writing batch:', batch_index
                batch_file_name = 'batch_' + str(batch_index) + '.json'
                batch_file_names.append(batch_file_name)
                file_utils.save_file(TEMP_DIR, batch_file_name, batch_ids)

                batch_ids = []
                batch_index += 1

        if len(batch_ids) > 0:
            print 'Writing batch:', batch_index
            batch_file_name = 'batch_' + str(batch_index) + '.json'
            batch_file_names.append(batch_file_name)
            file_utils.save_file(TEMP_DIR, batch_file_name, batch_ids)

            batch_index += 1

        return batch_file_names

    def copy_docs_batch(self, doc_ids):
        print 'Fetching docs'
        self.data_utils.batch_fetch_docs_for_ids(base_url=self.src_data_loader_utils.server,
                                                ids=doc_ids,
                                                index=self.src_data_loader_utils.index,
                                                type=self.src_data_loader_utils.type,
                                                docs_fetched=self.docs_fetched,
                                                batch_size=500)
   
    def docs_fetched(self, docs, index, type):
        print 'Docs fetched', len(docs)
        docs_to_copy = {}

        # print 'Docs fetched', len(docs)
        for doc in docs:
            _id = doc['_id']
            if '_source' in doc:
                existing_doc = doc['_source']
                docs_to_copy[_id] = existing_doc

        self.copy_relations(docs_to_copy)
    
    def load_bulk_data(self, bulk_data):
        print 'Bulk data size', len(bulk_data), 'loading...'
        response = self.dest_data_loader_utils.load_bulk_data(bulk_data)

        if response:
            pass
            # print 'Done loading bulk data, saving response'
        else:
            print 'Bulk data load failed'

    def copy_relations(self, src_docs):
        bulk_data = ''
        count = 0

        # Copy relations 
        for _id in src_docs:
            src_doc = src_docs[_id]
            
            doc = {}
            if 'grants' in src_doc:
                doc['grants'] = src_doc['grants']

            count += 1

            if len(doc) > 0: 
                bulk_data += self.dest_data_loader_utils.bulk_update_header(_id)
                bulk_data += '\n'
                doc = {
                    'doc': doc
                }
                bulk_data += json.dumps(doc)
                bulk_data += '\n'

                # if count % 1000 == 0:
                #     print 'Processed', 1000, 'docs'
                if len(bulk_data) >= 150000:
                    print _id
                    self.load_bulk_data(bulk_data)
                    # print 'Copied', count, 'docs'
                    bulk_data = ''

        if len(bulk_data) > 0:
            self.load_bulk_data(bulk_data)
            pass
コード例 #14
0
ファイル: fix_citations.py プロジェクト: rrosiek/pc_data_load
 def __init__(self, batch_docs_directory, load_config, batch_name):
     self.load_config = load_config
     # self.batch = batch
     self.batch_docs_directory = batch_docs_directory
     self.batch_name = batch_name
     self.data_utils = DataUtils()
コード例 #15
0
ファイル: fix_citations.py プロジェクト: rrosiek/pc_data_load
class ProcessBatch(object):
    def __init__(self, batch_docs_directory, load_config, batch_name):
        self.load_config = load_config
        # self.batch = batch
        self.batch_docs_directory = batch_docs_directory
        self.batch_name = batch_name
        self.data_utils = DataUtils()

    def run(self, batch):
        print 'Fetching docs', len(batch)
        self.data_utils.batch_fetch_docs_for_ids(
            base_url=self.load_config.server,
            ids=batch,
            index=self.load_config.index,
            type=self.load_config.type,
            docs_fetched=self.docs_fetched,
            batch_size=500)

    def docs_fetched(self, docs, index, type):
        print 'Docs fetched', len(docs)
        docs_to_process = {}

        # print 'Docs fetched', len(docs)
        for doc in docs:
            _id = doc['_id']
            if '_source' in doc:
                existing_doc = doc['_source']
                docs_to_process[_id] = existing_doc

        self.process_docs(docs_to_process)

    def process_docs(self, docs):
        print 'Processing docs', len(docs)

        citation_errors = {}
        for _id in docs:
            # print 'Processing doc', _id
            doc = docs[_id]

            citations_from_update_history = self.get_citations_from_data(doc)
            current_citations = self.get_citations(doc)

            if len(current_citations) != len(citations_from_update_history):
                citation_errors[_id] = citations_from_update_history

                print _id, 'current citations:', len(
                    current_citations), 'citations from update history:', len(
                        citations_from_update_history)

        file_utils.save_file(self.batch_docs_directory,
                             'citation_errors_' + self.batch_name + '.json',
                             citation_errors)

    def get_citations_from_data(self, doc):
        citations = []
        if 'PubmedData' in doc:
            if 'ReferenceList' in doc['PubmedData']:
                if 'Reference' in doc['PubmedData']['ReferenceList']:
                    reference_list = doc['PubmedData']['ReferenceList'][
                        'Reference']

                    if not isinstance(reference_list, list):
                        reference_list = [reference_list]

                    for reference in reference_list:
                        if 'ArticleIdList' in reference:
                            article_id_list = reference['ArticleIdList']
                            if 'ArticleId' in article_id_list:
                                article_ids = article_id_list['ArticleId']
                                if not isinstance(article_ids, list):
                                    article_ids = [article_ids]

                                for article_id in article_ids:
                                    if 'IdType' in article_id:
                                        article_id_type = article_id['IdType']
                                        if article_id_type == 'pubmed':
                                            pmid = article_id['content']
                                            citations.append(pmid)

        return citations

    def get_citations(self, doc):
        citations = []
        if doc is not None and 'citations' in doc:
            citations_array = doc['citations']

            for citation_item in citations_array:
                source = citation_item['source']
                index_id = citation_item['index_id']
                if source == self.load_config.source and index_id == ID_PUBMED:
                    citations = citation_item['ids']
                    break

        return citations
コード例 #16
0
class CTPublicationsRelationshipProcessor(object):

    def __init__(self, ct_load_config):
        self.ct_load_config = ct_load_config
        self.pubmed_load_config = self.get_pubmed_load_config()

        self.pubmed_relations = {}
        self.ct_relations = {}

        self.processed_docs = 0
        self.data_utils = DataUtils()

    def run(self):
        # doc_ids = export_doc_ids( self.server, self.index,
        #                             self.type, self.index + '_' + self.type , 'doc_ids.json')
        doc_ids = file_utils.load_file( self.ct_load_config.index, self.ct_load_config.index + '_ids.json')

        if len(doc_ids) == 0:
            doc_ids = export_doc_ids.export_doc_ids(self.ct_load_config.server, self.ct_load_config.index, self.ct_load_config.type)

        doc_ids = doc_ids.keys()

        self.data_utils.batch_fetch_docs_for_ids(base_url= self.ct_load_config.server,
                                            ids=doc_ids,
                                            index= self.ct_load_config.index,
                                            type= self.ct_load_config.type,
                                            docs_fetched=self.docs_fetched)

        print 'Total pubmed relations', len(self.pubmed_relations)
        print 'Total ct relations', len(self.pubmed_relations)

        # Load Pubmed relations
        pubmed_ids = {}
        pubmed_ids = data_mapper.reformat(reformatted_array=pubmed_ids,
                                          relations_array=self.pubmed_relations,
                                          dest_index_id=ID_CLINICAL_TRIALS,
                                          relationship_type=RELATIONSHIP_TYPE_CITATIONS)

        print 'Reformatted pubmed ids', len(pubmed_ids)

        self.pubmed_load_config.append_relations = True
        self.pubmed_load_config.source = 'ct_publications'
        self.pubmed_load_config.data_source_name = 'ct_publications_relations'

        data_load_batcher = DataLoadBatcher(self.pubmed_load_config,  self.pubmed_load_config.index,  self.pubmed_load_config.type)
        data_load_batcher.load_relationships = True
        data_load_batcher.process_data_rows('pubmed_ct_citations', pubmed_ids)

        # Load Clinical trials relations
        ct_ids = {}
        ct_ids = data_mapper.reformat(reformatted_array=ct_ids,
                                      relations_array=self.ct_relations,
                                      dest_index_id=ID_PUBMED,
                                      relationship_type=RELATIONSHIP_TYPE_CITED_BYS)
        print 'Reformatted ct ids', len(ct_ids)

        self.ct_load_config.append_relations = True
        self.ct_load_config.source = 'ct_publications'
        self.ct_load_config.data_source_name = 'ct_publications_relations'

        data_load_batcher = DataLoadBatcher(self.ct_load_config,  self.ct_load_config.index,  self.ct_load_config.type)
        data_load_batcher.load_relationships = True
        data_load_batcher.process_data_rows('ct_pubmed_cited_bys', ct_ids)

    def get_pubmed_load_config(self):
        index_item = es_utils.get_info_for_index_id(ID_PUBMED)
        pubmed_index = index_item['index']
        pubmed_type = index_item['index_type']

        load_config = LoadConfig()
        load_config.root_directory = self.ct_load_config.root_directory

        load_config.server = self.ct_load_config.server
        load_config.index = pubmed_index
        load_config.type = pubmed_type

        load_config.data_extractor = PubmedDataExtractor()
        load_config.data_mapper = PubmedDataMapper()

        return load_config

    def docs_fetched(self, docs, index, type):
        docs_to_process = {}

        print 'Docs fetched', len(docs)
        for doc in docs:
            _id = doc['_id']
            if '_source' in doc:
                existing_doc = doc['_source']
                docs_to_process[_id] = existing_doc

        self.process_docs(docs_to_process) 

        self.processed_docs += len(docs)
        print 'Processed docs', self.processed_docs, 'Pubmed relations', len(self.pubmed_relations) 

    def process_docs(self, docs):
        bulk_data = ''

        for _id in docs:
            doc = docs[_id]
            processed_doc = self.process_doc(_id, doc)
            
    def process_doc(self, _id, doc):
        if 'ct_publications' in doc:
            cited_bys = []
            ct_publications = doc['ct_publications']

            for ct_publication in ct_publications:
                if 'pmid' in ct_publication:
                    pmid = ct_publication['pmid']
                    pmid = str(pmid) 
                    if len(pmid) > 0:
                        cited_bys.append(pmid)

                        if pmid not in self.pubmed_relations:
                            self.pubmed_relations[pmid] = []

                        self.pubmed_relations[pmid].append(_id)

                        if _id not in self.ct_relations:
                            self.ct_relations[_id] = []

                        self.ct_relations[_id].append(pmid)
            
        return None
コード例 #17
0
ファイル: copy_docs.py プロジェクト: rrosiek/pc_data_load
class CopyDocs(object):
    def __init__(self, src_server, dest_server, src_index, src_type, dst_index,
                 dst_type):
        self.src_data_loader_utils = DataLoaderUtils(src_server, src_index,
                                                     src_type)
        self.dest_data_loader_utils = DataLoaderUtils(dest_server, dst_index,
                                                      dst_type)

        self.processed_doc_count = 0
        self.total_doc_count = 0

        self.data_utils = DataUtils()

    def get_total_doc_count(self):
        return self.data_utils.get_total_doc_count(
            base_url=self.src_data_loader_utils.server,
            index=self.src_data_loader_utils.index,
            type=self.src_data_loader_utils.type)

    def docs_fetched(self, docs, index, type):
        docs_to_copy = {}

        # print 'Docs fetched', len(docs)
        for doc in docs:
            _id = doc['_id']
            if '_source' in doc:
                existing_doc = doc['_source']
                docs_to_copy[_id] = existing_doc

        self.index_docs(docs_to_copy)

        self.processed_doc_count += len(docs)

        progress = ((self.processed_doc_count / float(self.total_doc_count)) *
                    100)
        print '---------------------------------------------------------------------------------------------'
        print 'Progress', self.processed_doc_count, '/', self.total_doc_count, progress, '%'
        print '---------------------------------------------------------------------------------------------'

    def export_doc_ids(self, server, src_index, src_type):
        print 'Fetching doc ids for', src_index, src_type
        query = {"match_all": {}}
        self.data_utils.batch_fetch_ids_for_query(base_url=server,
                                                  index=src_index,
                                                  type=src_type,
                                                  query=query,
                                                  ids_fetched=self.ids_fetched)

        # print 'Done, fetched', len(documents_ids), 'doc ids'

    def ids_fetched(self, ids, index, type):
        self.copy_docs_batch(ids)

    def create_destination_index(self, mapping=None):
        if mapping is None:
            # Get mapping from src index
            mapping = self.src_data_loader_utils.get_mapping_from_server()

        if not self.dest_data_loader_utils.index_exists():
            print 'Creating index'
            self.dest_data_loader_utils.put_mapping(mapping)
            # migrate_index(self.dest_data_loader_utils.index)
        else:
            print self.dest_data_loader_utils.index, 'exists'

    def copy_docs(self):
        self.processed_doc_count = 0
        self.total_doc_count = self.get_total_doc_count()

        print 'Total doc count', self.total_doc_count

        self.create_destination_index(mapping=None)

        self.export_doc_ids(server=self.src_data_loader_utils.server,
                            src_index=self.src_data_loader_utils.index,
                            src_type=self.src_data_loader_utils.type)

    def copy_docs_for_ids(self, doc_ids, mapping=None):
        self.processed_doc_count = 0
        self.total_doc_count = len(doc_ids)

        print 'Total doc count', self.total_doc_count

        self.create_destination_index(mapping)

        print 'Fetching docs from source index'
        batch_doc_processor = BatchDocProcessor(doc_ids, self.copy_docs_batch,
                                                3000, 16, 0.33)
        batch_doc_processor.run()

    def copy_docs_batch(self, doc_ids):
        self.data_utils.batch_fetch_docs_for_ids(
            base_url=self.src_data_loader_utils.server,
            ids=doc_ids,
            index=self.src_data_loader_utils.index,
            type=self.src_data_loader_utils.type,
            docs_fetched=self.docs_fetched)

    def index_docs(self, docs_to_copy):
        bulk_data = ''
        count = 0

        for es_id in docs_to_copy:
            count += 1
            doc = docs_to_copy[es_id]
            bulk_data += self.dest_data_loader_utils.bulk_index_header(es_id)
            bulk_data += '\n'
            bulk_data += json.dumps(doc)
            bulk_data += '\n'

            # if count % 1000 == 0:
            #     print 'Processed', 1000, 'docs'

            if len(bulk_data) >= 150000:
                self.load_bulk_data(bulk_data)
                # print 'Copied', count, 'docs'
                bulk_data = ''

        if len(bulk_data) > 0:
            self.load_bulk_data(bulk_data)

        # print 'Copied', count, 'docs'

    def load_bulk_data(self, bulk_data):
        # print 'Bulk data size', len(bulk_data), 'loading...'
        response = self.dest_data_loader_utils.load_bulk_data(bulk_data)

        if response:
            pass
            # print 'Done loading bulk data, saving response'
        else:
            print 'Bulk data load failed'


# src_server = 'http://localhost:9200'
# src_index = 'irdb_v3'
# src_type = 'grant'

# dest_server = 'http://localhost:9200'
# dest_index = 'irdb_v4'
# dest_type = 'grant'

# copy_docs = CopyDocs(src_server=src_server,
#                             dest_server=dest_server,
#                             src_index=src_index,
#                             src_type=src_type,
#                             dst_index=dest_index,
#                             dst_type=dest_type)

# copy_docs.copy_docs()
# copy_relations.relations_to_exclude.append({
#     "source": "",
#     "index_id": ID_PUBMED
# })
# copy_relations.run()
コード例 #18
0
ファイル: missing_ids.py プロジェクト: rrosiek/pc_data_load
class FindMissingIds(object):
    def __init__(self):
        self.missing_ids = {}
        self.new_ids = {}
        self.data_utils = DataUtils()
        self.data_loader_utils = DataLoaderUtils(SERVER, OLD_INDEX, OLD_TYPE,
                                                 '', '')

        self.docs_for_dolan = {}

    def run(self):
        old_ids = export_doc_ids(server=SERVER,
                                 src_index=OLD_INDEX,
                                 src_type=OLD_TYPE)

        new_ids = export_doc_ids(server=SERVER,
                                 src_index=NEW_INDEX,
                                 src_type=NEW_TYPE)

        for _id in old_ids:
            if _id not in new_ids:
                self.missing_ids[_id] = 0
                if len(self.missing_ids) % 1000 == 0:
                    print 'Missing ids', len(self.missing_ids)

        for _id in new_ids:
            if _id not in old_ids:
                self.new_ids[_id] = 0
                if len(self.new_ids) % 1000 == 0:
                    print 'New ids', len(self.new_ids)

        print 'Missing ids', len(self.missing_ids)
        print 'New ids', len(self.new_ids)

        file_utils.make_directory(missing_ids_directory)

        file_utils.save_file(missing_ids_directory, 'missing_ids.json',
                             self.missing_ids.keys())
        file_utils.save_file(missing_ids_directory, 'new_ids.json',
                             self.new_ids)

    def check_tags_and_annotations(self):
        missing_ids = file_utils.load_file(missing_ids_directory,
                                           'missing_ids.json')
        new_ids = file_utils.load_file(missing_ids_directory, 'new_ids.json')

        print 'Missing ids', len(missing_ids)
        print 'New ids', len(new_ids)

        docs_with_tags = self.fetch_ids()

        missing_docs_with_tags = []
        for _id in missing_ids:
            if _id in docs_with_tags:
                missing_docs_with_tags.append(_id)
                print 'Missing docs with tags', _id

        print 'Missing docs with tags', len(missing_docs_with_tags)
        print 'Missing docs with tags', json.dumps(missing_docs_with_tags)

        for _id in missing_docs_with_tags:
            existing_doc = self.get_existing_doc(_id)
            if 'userTags' in existing_doc:
                user_tags = existing_doc['userTags']
                for user_tag in user_tags:
                    added_by = user_tag['added_by']

                    if added_by == '*****@*****.**':
                        self.docs_for_dolan[_id] = existing_doc
                        print _id
                        print user_tags

                    break

        print 'Docs for Dolan', len(self.docs_for_dolan)

        print 'Docs for Dolan', self.docs_for_dolan.keys()

    def get_existing_doc(self, _id):
        exisiting_doc = self.data_loader_utils.fetch_doc(_id)
        if exisiting_doc is not None and '_source' in exisiting_doc:
            exisiting_doc = exisiting_doc['_source']
        return exisiting_doc

    def fetch_ids(self):
        combined_docs = {}

        tags_query = self.tags_query()
        annotations_query = self.annotations_query()

        print 'Fetching docs with tags', SERVER, OLD_INDEX, OLD_TYPE
        docs_with_tags = self.data_utils.batch_fetch_ids_for_query(
            base_url=SERVER,
            query=tags_query,
            index=OLD_INDEX,
            type=OLD_TYPE,
            ids_fetched=self.ids_fetched,
            batch_size=1000)
        print len(docs_with_tags), 'docs_with_tags'
        for _id in docs_with_tags:
            combined_docs[_id] = ''

        print 'Fetching docs with annotations', SERVER, OLD_INDEX, OLD_TYPE
        docs_with_annotations = self.data_utils.batch_fetch_ids_for_query(
            base_url=SERVER,
            query=annotations_query,
            index=OLD_INDEX,
            type=OLD_TYPE,
            ids_fetched=self.ids_fetched,
            batch_size=1000)

        print len(docs_with_annotations), 'docs_with_annotations'
        for _id in docs_with_annotations:
            combined_docs[_id] = ''

        print len(combined_docs), 'combined_docs'
        return combined_docs

    def ids_fetched(self, ids, index, type):
        print len(ids), 'ids fetched'

    def tags_query(self):
        tags_query = {
            "nested": {
                "path": "userTags",
                "query": {
                    "bool": {
                        "must": [{
                            "exists": {
                                "field": "userTags"
                            }
                        }]
                    }
                }
            }
        }

        return tags_query

    def annotations_query(self):
        annotations_query = {
            "nested": {
                "path": "annotations",
                "query": {
                    "bool": {
                        "must": [{
                            "exists": {
                                "field": "annotations"
                            }
                        }]
                    }
                }
            }
        }

        return annotations_query
コード例 #19
0
    def process_id(self, _id):
        grant_numbers = []
        derwent_ids = []
        if _id in self.irdb_docs:
            doc = self.irdb_docs[_id]
            if doc is not None:
                admin_phs_org_code = None
                if 'admin_phs_org_code' in doc:
                    admin_phs_org_code = doc['admin_phs_org_code']

                serial_num = None
                if 'serial_num' in doc:
                    serial_num = doc['serial_num']

                if admin_phs_org_code is not None and serial_num is not None:
                    grant_number = admin_phs_org_code + '' + serial_num
                    grant_numbers.append(grant_number)

                    grant_number = admin_phs_org_code + '-' + serial_num
                    grant_numbers.append(grant_number)

                    grant_number = admin_phs_org_code + '0' + serial_num
                    grant_numbers.append(grant_number)

                    grant_number = admin_phs_org_code + '-0' + serial_num
                    grant_numbers.append(grant_number)

                    grant_number = admin_phs_org_code + ' ' + serial_num
                    grant_numbers.append(grant_number)

                    grant_number = admin_phs_org_code + ' 0' + serial_num
                    grant_numbers.append(grant_number)

        if len(grant_numbers) > 0:
            should_query = []
            for grant_number in grant_numbers:
                match_phrase_query = {
                    "match_phrase": {
                        "government_support": grant_number
                    }
                }

                should_query.append(match_phrase_query)

            query = {"bool": {"should": should_query}}

            data_utils = DataUtils(self.session)
            derwent_ids = data_utils.batch_fetch_ids_for_query(
                base_url=SERVER,
                query=query,
                index=INDEX_MAPPING[ID_DERWENT_PATENTS]['index'],
                type=INDEX_MAPPING[ID_DERWENT_PATENTS]['type'])

            # if len(derwent_ids) > 0:
            #     print _id, len(derwent_ids)

            #     if len(derwent_ids) < 5:
            #         print derwent_ids
            #     time.sleep(5)

        return derwent_ids
コード例 #20
0
ファイル: fix_cited_bys.py プロジェクト: rrosiek/pc_data_load
 def __init__(self, load_config):
     super(FixCitedBys, self).__init__(load_config, batch_doc_count=5000, multiprocess=True)
     self.load_config = load_config
     self.data_utils = DataUtils()
コード例 #21
0
ファイル: fix_cited_bys.py プロジェクト: rrosiek/pc_data_load
class FixCitedBys(BatchProcessor):

    def __init__(self, load_config):
        super(FixCitedBys, self).__init__(load_config, batch_doc_count=5000, multiprocess=True)
        self.load_config = load_config
        self.data_utils = DataUtils()

    def create_processed_files(self):
        processed_batches = file_utils.load_file(self.batch_docs_directory(), PROCESSED_BATCHES_FILE)
        for batch_file_name in processed_batches:
            file_utils.save_file(self.batch_docs_directory(), RESULTS_FILE_PREFIX + batch_file_name, {})

    def process_completed(self):
        pass

    def get_batch_docs_directory(self):
        return DIR

    # def get_query(self):
    #     return {
    #                 "exists": {
    #                     "field": "update_history"
    #                 }
    #             }

    def process_docs_batch(self, batch, batch_name):
        print 'Processing docs', len(batch)
        pubmed_cited_bys_pubmed = {}
        for _id in batch:
            cited_bys = self.get_cited_bys(_id)
            if len(cited_bys) > 0:
                pubmed_cited_bys_pubmed[_id] = cited_bys

            # print _id, len(cited_bys)

        pubmed_ids = {}
        pubmed_ids = self.load_config.data_mapper.reformat(reformatted_array=pubmed_ids,
                                                            relations_array=pubmed_cited_bys_pubmed,
                                                            dest_index_id=ID_PUBMED,
                                                            relationship_type=RELATIONSHIP_TYPE_CITED_BYS,
                                                            removed_ids=[])

        
        print batch_name, len(pubmed_ids), 'ids to update'
        relationship_loader = RelationshipLoader(self.load_config, pubmed_ids, self.load_config.index, self.load_config.type, 'ds_batch_fix_cited_bys')
        relationship_loader.run()

        return {}

    def get_cited_bys(self, _id):
        """
        Search elasticsearch for any docs citing the given id
        """
        query = {
            "bool": {
                "must": [
                    {
                        "match": {
                            "citations.ids": _id
                        }
                    },
                    {
                        "match": {
                            "citations.source": ""
                        }
                    },
                    {
                        "match": {
                            "citations.index_id": ID_PUBMED
                        }
                    }
                ]
            }
        }

        ids = self.data_utils.batch_fetch_ids_for_query(base_url=self.load_config.server, 
                                                query=query, 
                                                index=self.load_config.index, 
                                                type=self.load_config.type)

        return ids
コード例 #22
0
class PubmedRelationshipProcessor(DataSourceProcessor):
    def __init__(self, load_config, data_source, data_source_summary):
        super(PubmedRelationshipProcessor,
              self).__init__(load_config, data_source)
        self.data_source_summary = data_source_summary
        self.data_loader_utils = DataLoaderUtils(
            self.load_config.server, self.load_config.index,
            self.load_config.type, self.load_config.server_username,
            self.load_config.server_password)
        self.load_relationships = True

        self.docs_with_new_citations = {}
        self.docs_citations_history = {}

        self.existing_docs = {}

        self.data_utils = DataUtils()

    def docs_fetched(self, docs, index, type):
        self.load_config.log(LOG_LEVEL_TRACE, 'Docs fetched', len(docs))
        for doc in docs:
            _id = doc['_id']
            if '_source' in doc:
                existing_doc = doc['_source']
                self.existing_docs[_id] = existing_doc

    def get_docs_with_new_citations(self):
        return self.docs_with_new_citations

    def get_citations_history(self):
        return self.docs_citations_history

    def update_citations_history(self, new_doc, _id, new_citations,
                                 existing_citations):
        # Update citation history
        if _id not in self.docs_citations_history:
            self.docs_citations_history[_id] = {}

        # Set the new doc flag
        self.docs_citations_history[_id]['new'] = new_doc

        # Update new citations
        if 'new_citations' not in self.docs_citations_history[_id]:
            self.docs_citations_history[_id]['new_citations'] = []

        self.docs_citations_history[_id]['new_citations'].extend(new_citations)

        # Update existing citations
        if 'existing_citations' not in self.docs_citations_history[_id]:
            self.docs_citations_history[_id]['existing_citations'] = []

        self.docs_citations_history[_id]['existing_citations'].extend(
            existing_citations)

    def process_relationships(self, extracted_ids):
        # all_indexed_ids = {}
        # if 'indexed_ids' in self.data_source_summary:
        #     all_indexed_ids = self.data_source_summary['indexed_ids']

        all_updated_ids = {}
        if 'updated_ids' in self.data_source_summary:
            all_updated_ids = self.data_source_summary['updated_ids']

        print 'all_updated_ids', len(all_updated_ids)
        print 'extracted_ids', len(extracted_ids)

        # Fetch existing (updated) docs
        self.load_config.log(LOG_LEVEL_DEBUG, 'Fetching docs',
                             self.load_config.server, self.load_config.index,
                             self.load_config.type)

        ids_to_fetch = all_updated_ids.keys()
        self.data_utils.batch_fetch_docs_for_ids(
            self.load_config.server, ids_to_fetch, self.load_config.index,
            self.load_config.type, self.docs_fetched,
            self.load_config.doc_fetch_batch_size,
            self.load_config.server_username, self.load_config.server_password)

        print 'existing_docs', len(self.existing_docs)

        pubmed_citations_pubmed = {}
        pubmed_cited_bys_pubmed = {}

        citations_to_remove = {}
        cited_bys_to_remove = {}

        count = 0
        for _id in extracted_ids:
            count += 1

            data = extracted_ids[_id]

            if len(data) == 0:
                print 'No data for', _id

            new_doc = False
            existing_citations = []
            new_citations = self.load_config.data_mapper.get_citations(data)

            if _id in all_updated_ids:
                # Existing doc
                existing_doc = self.get_existing_doc(_id)
                existing_citations = self.get_citations(existing_doc)
                new_doc = False
            else:
                new_doc = True

            self.update_citations_history(new_doc, _id, new_citations,
                                          existing_citations)

            added_citations = []
            removed_citations = []

            # Get removed citations
            for existing_citation in existing_citations:
                if existing_citation not in new_citations:
                    removed_citations.append(existing_citation)

            # Get added citations
            for new_citation in new_citations:
                if new_citation not in existing_citations:
                    added_citations.append(new_citation)

            # Added citations and cited bys
            for citation in added_citations:
                # Citations
                if _id not in pubmed_citations_pubmed:
                    pubmed_citations_pubmed[_id] = []
                if citation not in pubmed_citations_pubmed[_id]:
                    pubmed_citations_pubmed[_id].append(citation)

                # Cited by
                if citation not in pubmed_cited_bys_pubmed:
                    pubmed_cited_bys_pubmed[citation] = []
                if _id not in pubmed_cited_bys_pubmed[citation]:
                    pubmed_cited_bys_pubmed[citation].append(_id)

            # Get existing cited bys (citations from other existing docs) for the new doc
            # if new_doc:
            #     existing_cited_bys = self.get_existing_cited_bys(_id)

            #     for cited_by in existing_cited_bys:
            #         if _id not in pubmed_cited_bys_pubmed:
            #             pubmed_cited_bys_pubmed[_id] = []
            #         if cited_by not in pubmed_cited_bys_pubmed[_id]:
            #             pubmed_cited_bys_pubmed[_id].append(cited_by)

            # Removed citations and cited bys
            for removed_citation in removed_citations:
                # Removed citations
                if _id not in citations_to_remove:
                    citations_to_remove[_id] = []
                if removed_citation not in citations_to_remove[_id]:
                    citations_to_remove[_id].append(removed_citation)

                # Removed cited_bys
                if removed_citation not in cited_bys_to_remove:
                    cited_bys_to_remove[removed_citation] = []
                if _id not in cited_bys_to_remove[removed_citation]:
                    cited_bys_to_remove[removed_citation].append(_id)

            # Docs with new citations
            if len(added_citations) > 0:
                if _id not in self.docs_with_new_citations:
                    self.docs_with_new_citations[_id] = []
                self.docs_with_new_citations[_id].extend(added_citations)

            if count % 1000 == 0:
                print 'Processed', count, 'docs'

        pubmed_ids = {}
        pubmed_ids = self.load_config.data_mapper.reformat(
            reformatted_array=pubmed_ids,
            relations_array=pubmed_citations_pubmed,
            dest_index_id=ID_PUBMED,
            relationship_type=RELATIONSHIP_TYPE_CITATIONS,
            removed_ids=citations_to_remove)

        pubmed_ids = self.load_config.data_mapper.reformat(
            reformatted_array=pubmed_ids,
            relations_array=pubmed_cited_bys_pubmed,
            dest_index_id=ID_PUBMED,
            relationship_type=RELATIONSHIP_TYPE_CITED_BYS,
            removed_ids=cited_bys_to_remove)

        print 'pubmed_citations_pubmed', len(pubmed_citations_pubmed)
        print 'pubmed_cited_bys_pubmed', len(pubmed_cited_bys_pubmed)

        print 'citations_to_remove', len(citations_to_remove)
        print 'cited_bys_to_remove', len(cited_bys_to_remove)

        print 'reformatted pubmed_ids', len(pubmed_ids)

        relationships = dict()
        relationships[ID_PUBMED] = pubmed_ids

        return relationships

    # def get_cited_bys_for_doc(self, _id):
    #     doc = self.fetch_existing_doc(_id)
    #     return self.get_cited_bys(doc)

    # Fetch existing doc from elasticsearch
    def fetch_existing_doc(self, _id):
        existing_doc = self.data_loader_utils.fetch_doc(_id)
        if existing_doc is not None and '_source' in existing_doc:
            existing_doc = existing_doc['_source']
        return existing_doc

    def get_existing_doc(self, _id):
        existing_doc = None
        if _id in self.existing_docs:
            existing_doc = self.existing_docs[_id]

        # Retry two times if not obtained in mget
        if existing_doc is None or len(existing_doc) == 0:
            existing_doc = self.fetch_existing_doc(_id)
            if existing_doc is None or len(existing_doc) == 0:
                existing_doc = self.fetch_existing_doc(_id)

        return existing_doc

    def get_cited_bys(self, doc):
        cited_bys = []
        if doc is not None and 'cited_bys' in doc:
            cited_bys_array = doc['cited_bys']

            for cited_by_item in cited_bys_array:
                source = cited_by_item['source']
                index_id = cited_by_item['index_id']
                if source == self.load_config.source and index_id == ID_PUBMED:
                    cited_bys = cited_by_item['ids']
                    break

        return cited_bys

    # Get citations from doc
    def get_citations(self, doc):
        citations = []
        if doc is not None and 'citations' in doc:
            citations_array = doc['citations']

            for citation_item in citations_array:
                source = citation_item['source']
                index_id = citation_item['index_id']
                if source == self.load_config.source and index_id == ID_PUBMED:
                    citations = citation_item['ids']
                    break

        return citations

    def has_multiple_citations(self, doc):
        citations = []
        if 'citations' in doc:
            citations_array = doc['citations']
            if len(citations_array) > 1:
                return True

        return False

    def get_existing_cited_bys(self, _id):
        """
        Search elasticsearch for any docs citing the given id
        """
        query = {
            "bool": {
                "must": [{
                    "match": {
                        "citations.ids": _id
                    }
                }, {
                    "match": {
                        "citations.source": ""
                    }
                }, {
                    "match": {
                        "citations.index_id": ID_PUBMED
                    }
                }]
            }
        }

        ids = self.data_utils.batch_fetch_ids_for_query(
            base_url=self.load_config.server,
            query=query,
            index=self.load_config.index,
            type=self.load_config.type)

        return ids

    def update_doc(self, _id, existing_doc, original_citations,
                   removed_citations, added_citations):
        if len(removed_citations) > 0 or len(added_citations) > 0:
            print 'Updating doc:', _id, 'original_citations', len(
                original_citations), 'removed_citations', len(
                    removed_citations), 'added_citations', len(added_citations)
        now = datetime.datetime.now()

        updated_date = now.isoformat()
        update_file = os.path.basename(self.data_source.data_source_file_path)

        # Create the update history item
        update_history_item = {
            "updated_date": updated_date,
            "update_file": update_file,
            "removed_citations": removed_citations,
            "added_citations": added_citations
        }

        # Get the existing update history
        update_history = []
        if 'update_history' in existing_doc:
            update_history = existing_doc['update_history']

        # Add the original citations list if not present
        if len(update_history) == 0:
            update_history.append({"original_citations": original_citations})

        # Add the new update history item
        update_history.append(update_history_item)

        doc = {"update_history": update_history}

        doc = {'doc': doc}

        self.data_loader_utils.update_doc(_id, doc)
コード例 #23
0
class CopyRelationships(object):
    def __init__(self, src_server, dest_server, src_index, src_type, dst_index,
                 dst_type, username, password):
        self.src_data_loader_utils = DataLoaderUtils(src_server, src_index,
                                                     src_type)
        self.dest_data_loader_utils = DataLoaderUtils(dest_server, dst_index,
                                                      dst_type)

        self.processed_doc_count = 0
        self.total_doc_count = 0

        self.data_utils = DataUtils()

        self.relations_to_exclude = []
        self.missing_destination_ids = []

        self.username = username
        self.password = password

        self.last_time_stamp = 0
        self.diff_average = 0

    def run(self):
        self.processed_doc_count = 0
        self.total_doc_count = self.get_total_doc_count()

        print 'Total doc count', self.total_doc_count

        # self.create_destination_index(mapping=None)
        self.export_doc_ids(server=self.src_data_loader_utils.server,
                            src_index=self.src_data_loader_utils.index,
                            src_type=self.src_data_loader_utils.type)

        print 'saving missing docs'

        file_utils.save_file('/data/data_loading/pubmed_2019',
                             'missing_docs_pubmed2019.json',
                             self.missing_destination_ids)

    def run_for_ids(self, doc_ids, mapping=None):
        self.processed_doc_count = 0
        self.total_doc_count = len(doc_ids)

        print 'Total doc count', self.total_doc_count

        print 'Fetching docs from source index'
        batch_doc_processor = BatchDocProcessor(doc_ids, self.copy_docs_batch,
                                                1000, 1, 0)
        batch_doc_processor.run()

        file_utils.save_file('/data/data_loading/pubmed_2019',
                             'missing_docs_pubmed2019.json',
                             self.missing_destination_ids)

    def export_doc_ids(self, server, src_index, src_type):
        print 'Fetching doc ids for', src_index, src_type
        query = {"match_all": {}}
        self.data_utils.batch_fetch_ids_for_query(base_url=server,
                                                  index=src_index,
                                                  type=src_type,
                                                  query=query,
                                                  ids_fetched=self.ids_fetched,
                                                  batch_size=10000)

        # print 'Done, fetched', len(documents_ids), 'doc ids'

    def ids_fetched(self, ids, index, type):
        print 'Ids fetched', len(ids)
        self.copy_docs_batch(ids)

    def copy_docs_batch(self, doc_ids):
        print 'Fetching docs'
        self.data_utils.batch_fetch_docs_for_ids(
            base_url=self.src_data_loader_utils.server,
            ids=doc_ids,
            index=self.src_data_loader_utils.index,
            type=self.src_data_loader_utils.type,
            docs_fetched=self.docs_fetched,
            batch_size=500)

    def docs_fetched(self, docs, index, type):
        print 'Docs fetched', len(docs)
        docs_to_copy = {}

        # print 'Docs fetched', len(docs)
        for doc in docs:
            _id = doc['_id']
            if '_source' in doc:
                existing_doc = doc['_source']
                docs_to_copy[_id] = existing_doc

        self.copy_relations(docs_to_copy)

        # Update progress
        self.processed_doc_count += len(docs)
        progress = ((self.processed_doc_count / float(self.total_doc_count)) *
                    100)

        current_time_stamp = time.time()
        diff = current_time_stamp - self.last_time_stamp
        self.diff_average = float(diff + self.diff_average) / 2
        time_remaining = diff * (float(self.total_doc_count) / len(docs))

        self.last_time_stamp = current_time_stamp

        print '---------------------------------------------------------------------------------------------'
        print 'Progress', self.processed_doc_count, '/', self.total_doc_count, progress, '%', time_remaining, 'secs'
        print '---------------------------------------------------------------------------------------------'

    def get_src_relations(self, src_doc, relationship_type):
        src_relations = []

        if relationship_type in src_doc:
            relations = src_doc[relationship_type]

            for relation_item in relations:
                exclude_relation_item = False
                for relation_to_exclude in self.relations_to_exclude:
                    if relation_to_exclude['source'] == relation_item[
                            'source'] and relation_to_exclude[
                                'index_id'] == relation_item['index_id']:
                        exclude_relation_item = True
                        break

                if not exclude_relation_item:
                    src_relations.append(relation_item)

        return src_relations

    def get_dest_relations(self, dest_doc, relationship_type):
        dest_relations = []

        if relationship_type in dest_doc:
            dest_relations = dest_doc[relationship_type]

        return dest_relations

    def add_relations(self, append_ids, relation, relations_list):
        relation_found = False
        for existing_relation in relations_list:
            # print existing_relation['source'], relation['source'], existing_relation['index_id'], relation['index_id']
            if existing_relation['source'] == relation[
                    'source'] and existing_relation['index_id'] == relation[
                        'index_id']:
                existing_relation_ids = existing_relation['ids']

                if append_ids:
                    relation_ids = relation['ids']

                    for _id in relation_ids:
                        if _id not in existing_relation_ids:
                            existing_relation_ids.append(_id)

                existing_relation['ids'] = existing_relation_ids

                relation_found = True
                break

        if not relation_found:
            relations_list.append(relation)

        return relations_list

    def merge_relations(self, src_doc, dest_doc, relationship_type):
        dest_relations = self.get_dest_relations(dest_doc, relationship_type)
        src_relations = self.get_src_relations(src_doc, relationship_type)

        # print 'src_relations', len(src_relations)
        # print 'dest_relations', len(dest_relations)

        combined_relations = []
        for relation in dest_relations:
            combined_relations = self.add_relations(True, relation,
                                                    combined_relations)

        for relation in src_relations:
            combined_relations = self.add_relations(True, relation,
                                                    combined_relations)

        return combined_relations

    def copy_relations(self, src_docs):
        bulk_data = ''
        count = 0

        # Fetch destination docs
        destination_ids = src_docs.keys()
        destination_docs_array = self.data_utils.fetch_docs_for_ids(
            base_url=self.dest_data_loader_utils.server,
            ids=destination_ids,
            index=self.dest_data_loader_utils.index,
            type=self.dest_data_loader_utils.type,
            username=self.username,
            password=self.password)

        # Create destination doc dict
        destination_docs = {}
        for doc in destination_docs_array:
            _id = doc['_id']
            if '_source' in doc:
                destination_docs[_id] = doc['_source']

        # Find missing destination docs
        for _id in destination_ids:
            if _id not in destination_docs:
                self.missing_destination_ids.append(_id)

        print 'Missing ids', len(self.missing_destination_ids)
        # print 'dest ids', len()

        # Copy relations
        for _id in destination_docs:
            dest_doc = destination_docs[_id]
            src_doc = src_docs[_id]

            dest_relations = {}

            dest_relations[RELATIONSHIP_TYPE_CITATIONS] = self.merge_relations(
                src_doc, dest_doc, RELATIONSHIP_TYPE_CITATIONS)
            dest_relations[RELATIONSHIP_TYPE_CITED_BYS] = self.merge_relations(
                src_doc, dest_doc, RELATIONSHIP_TYPE_CITED_BYS)
            dest_relations[RELATIONSHIP_TYPE_RELATIONS] = self.merge_relations(
                src_doc, dest_doc, RELATIONSHIP_TYPE_RELATIONS)

            doc = {}
            if len(dest_relations[RELATIONSHIP_TYPE_CITATIONS]) > 0:
                doc[RELATIONSHIP_TYPE_CITATIONS] = dest_relations[
                    RELATIONSHIP_TYPE_CITATIONS]

            if len(dest_relations[RELATIONSHIP_TYPE_CITED_BYS]) > 0:
                doc[RELATIONSHIP_TYPE_CITED_BYS] = dest_relations[
                    RELATIONSHIP_TYPE_CITED_BYS]

            if len(dest_relations[RELATIONSHIP_TYPE_RELATIONS]) > 0:
                doc[RELATIONSHIP_TYPE_RELATIONS] = dest_relations[
                    RELATIONSHIP_TYPE_RELATIONS]

            # if len(dest_relations[RELATIONSHIP_TYPE_CITATIONS]) >= 2:
            #     print _id

            count += 1

            # doc = docs_to_copy[es_id]
            bulk_data += self.dest_data_loader_utils.bulk_update_header(_id)
            bulk_data += '\n'
            doc = {'doc': doc}
            bulk_data += json.dumps(doc)
            bulk_data += '\n'

            # if count % 1000 == 0:
            #     print 'Processed', 1000, 'docs'
            if len(bulk_data) >= 150000:
                print _id
                self.load_bulk_data(bulk_data)
                # print 'Copied', count, 'docs'
                bulk_data = ''

        if len(bulk_data) > 0:
            self.load_bulk_data(bulk_data)
            pass

        # print 'Copied', count, 'docs'

    # def create_destination_index(self, mapping=None):
    #     if mapping is None:
    #         # Get mapping from src index
    #         mapping = self.src_data_loader_utils.get_mapping_from_server()

    #     if not self.dest_data_loader_utils.index_exists():
    #         print 'Creating index'
    #         self.dest_data_loader_utils.put_mapping(mapping)
    #         # migrate_index(self.dest_data_loader_utils.index)
    #     else:
    #         print self.dest_data_loader_utils.index, 'exists'

    def load_bulk_data(self, bulk_data):
        print 'Bulk data size', len(bulk_data), 'loading...'
        response = self.dest_data_loader_utils.load_bulk_data(bulk_data)

        if response:
            pass
            # print 'Done loading bulk data, saving response'
        else:
            print 'Bulk data load failed'

    def get_total_doc_count(self):
        return self.data_utils.get_total_doc_count(
            base_url=self.src_data_loader_utils.server,
            index=self.src_data_loader_utils.index,
            type=self.src_data_loader_utils.type)


# src_server = 'http://localhost:9200'
# src_index = 'pubmed2018_v5'
# src_type = 'article'

# dest_server = 'http://localhost:9200'
# dest_index = 'pubmed2019'
# dest_type = 'article'

# copy_relations = CopyRelationships(src_server=src_server,
#                                     dest_server=dest_server,
#                                     src_index=src_index,
#                                     src_type=src_type,
#                                     dst_index=dest_index,
#                                     dst_type=dest_type,
#                                     username='',
#                                     password='')

# copy_relations.relations_to_exclude.append({
#     "source": "",
#     "index_id": ID_PUBMED
# })
# copy_relations.run()
# copy_relations.run_for_ids([12620793])