コード例 #1
0
ファイル: main.py プロジェクト: Coldog2333/GMN_Chatbot
def debug(args):
    contexts, repsonses, contexts_graph_adjs, response_graph_adjs, labels = load_data_from_file(args.dir + 'data/2011_split_by_idname.csv', tokenize=True, read_case_num=10)

    net = GMN(emdedding_dim=768, use_bert=True).to(DEVICE)
    optimizer = torch.optim.Adam(net.parameters(), lr=LEARNING_RATE)
    loss_function = torch.nn.BCELoss()

    print('start training...')
    print('dataset size: %s' % labels.shape)
    for epoch in range(EPOCH):
        net.train()
        losses = []
        for k in range(len(labels) // BATCH_SIZE):
            output_p = net(contexts[k * BATCH_SIZE:(k+1) * BATCH_SIZE],
                           repsonses[k * BATCH_SIZE:(k+1) * BATCH_SIZE],
                           contexts_graph_adjs[k * BATCH_SIZE:(k+1) * BATCH_SIZE],
                           response_graph_adjs[k * BATCH_SIZE:(k+1) * BATCH_SIZE])

            loss = loss_function(output_p, labels[k * BATCH_SIZE:(k+1) * BATCH_SIZE])

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            losses.append(loss.item())
        print('loss: %.2f' % np.mean(losses))
コード例 #2
0
ファイル: spam_filter.py プロジェクト: lumbytyci/spam-filter
def spam_filter(train_mode: bool):

    labels, texts = dl.load_data_from_file(dataset_path)
    word_embeddings = dl.load_word_embeddings_from_file(word_emb_path)

    tokenizer = prepare.get_prepared_tokenizer(texts)
    texts = tokenizer.texts_to_sequences(texts)

    texts = np.array(texts)
    texts = pad_sequences(texts, maxlen=config['dataset']['max_seq_len'])

    labels = prepare.encode_labels(labels)
    labels = np.array(labels)

    texts_train, texts_test, labels_train, labels_test = train_test_split(
        texts,
        labels,
        random_state=config['dataset']['random_state'],
        test_size=config['dataset']['test_size'])

    embeddings_matrix = prepare.map_embeddings_to_word_index(
        word_embeddings, tokenizer.word_index)

    seq_model = model.get_compiled_model(embeddings_matrix, config)
    seq_model.summary()

    if train_mode:
        print("Entering train mode")
        train.train_model(seq_model, config, texts_train, labels_train,
                          texts_test, labels_test)
    else:
        print("Loading weights file and entering prediction mode")
        load_weights_from_file(
            '../checkpoints/weights-improvement-12-0.98.hdf5', seq_model,
            texts_test, labels_test)

        while True:
            try:
                text = str(input('>> '))
                prediction = get_prediction(seq_model, tokenizer, text)
                prediction_index = utils.probability_to_index(prediction)
                print("Prediction:", utils.decode_index(prediction_index))
            except (KeyboardInterrupt, KeyError):
                print()
                exit()
コード例 #3
0
ファイル: main.py プロジェクト: Coldog2333/GMN_Chatbot
def train(args):
    eval_contexts, eval_repsonses, eval_contexts_graph_adjs, eval_response_graph_adjs, eval_labels = load_data_from_file(args.dir + 'data/2020_split_by_idname.csv', tokenize=True)

    contexts, repsonses, contexts_graph_adjs, response_graph_adjs, labels = load_data_from_file(args.dir + 'data/from_2011_to_2019_split_by_idname.csv', tokenize=True)

    # move tensors to the specified devices.
    if DEVICE == 'cuda':
        for tensor in [eval_contexts, eval_repsonses, eval_contexts_graph_adjs, eval_response_graph_adjs, eval_labels,
                       contexts, repsonses, contexts_graph_adjs, response_graph_adjs, labels]:
            tensor.cuda()
    else:
        for tensor in [eval_contexts, eval_repsonses, eval_contexts_graph_adjs, eval_response_graph_adjs, eval_labels,
                       contexts, repsonses, contexts_graph_adjs, response_graph_adjs, labels]:
            tensor.cpu()

    net = GMN(emdedding_dim=768, use_bert=True).to(DEVICE)
    optimizer = torch.optim.Adam(net.parameters(), lr=LEARNING_RATE)
    loss_function = torch.nn.BCELoss()

    print('start training...')
    print('dataset size: %s' % labels.shape)
    for epoch in range(EPOCH):
        net.train()
        losses = []
        for k in range(len(labels) // BATCH_SIZE):
            output_p = net(contexts[k * BATCH_SIZE:(k+1) * BATCH_SIZE],
                           repsonses[k * BATCH_SIZE:(k+1) * BATCH_SIZE],
                           contexts_graph_adjs[k * BATCH_SIZE:(k+1) * BATCH_SIZE],
                           response_graph_adjs[k * BATCH_SIZE:(k+1) * BATCH_SIZE])

            loss = loss_function(output_p, labels[k * BATCH_SIZE:(k+1) * BATCH_SIZE])

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            losses.append(loss.item())
        print('loss: %.2f' % np.mean(losses))
        evaluate(net, eval_contexts, eval_repsonses, eval_contexts_graph_adjs, eval_response_graph_adjs, eval_labels)
コード例 #4
0
 def __getitem__(
     self, index
 ):  # because how we design our data loadin, this returns a whole batch
     data = data_loader.load_data_from_file(
         np.random.choice(np.array(self.file_list)))  # random file in here
     if self.who_dies_next_mode == True or self.is_validation == True:
         X, y, death_times = data_loader.getBatchBalanced(
             data,
             self.batch_size,
             self.feature_indicies,
             self.label_indicies,
             get_death_times=True)
         return X, y, death_times
     else:
         player_i = np.random.randint(10)
         X, y, death_times = data_loader.getBalancedBatchForPlayer(
             data,
             player_i,
             self.batch_size,
             self.feature_indicies,
             self.label_indicies,
             get_death_times=True)
         return X, y, death_times, player_i
コード例 #5
0
def make_predictions(file,modelPath):
    trainingDataFiles = [file]#glob.glob("/scratch/staff/ak1774/shared_folder/data/train/*.h5")
    data = data_loader.load_data_from_file(trainingDataFiles[0])

    models = []
    for i in range(1,2):
        print(i)
        models.append( load_pytorch_model('ModelData/' +str(i) +'/' +'model.model',
                            get_config('/' +str(i) +'/config.json'), data) )



    


    #fullGameData,fullGameLabels = data_loader.getSequencialNaive(data,hero_feature_indicies,label_indicies)


    xLims = data['time'].values

    #¢health = data['player_4_m_iHealth'].values

    
    #######################
    # get original health
    ######################

    norm_stats = None
    with open("norm_stats.pickle", 'rb') as f:
        norm_stats = pickle.load(f)

    for label,min_value,max_value in normalization_stats:
        if "_m_iHealth" in label:
            health_min = min_value
            health_max = max_value
        if "m_iMaxHealth" in label:
            maxhealth_min = min_value
            maxhealth_max = max_value

    healthes = []
    max_healthes = []
    relative_healthes = []
    for i in range(0,10):
        health_vals = data['player_' + str(i) + '_m_iHealth'].values
        maxhealth_vals = data['player_' + str(i) + '_m_iMaxHealth'].values

        health_vals = health_vals * (health_max - health_min) + health_min
        maxhealth_vals = maxhealth_vals * (maxhealth_max - maxhealth_min) + maxhealth_min

        relative_health_vals = health_vals / maxhealth_vals # hopefully maxhealth is never 0

        healthes.append(health_vals)
        max_healthes.append(maxhealth_vals)
        relative_healthes.append(relative_health_vals)


    #######################
    # get death times
    ######################

    labels = [(i,label) for i,label in  enumerate(list(data))]
    death_time_indicies = preprocess.labels_to_indicies(preprocess.select_features_by_name("time_until_next_death",labels))
    death_times = data.values[:,death_time_indicies].astype(np.float32)



    for m in models:

        X = [torch.from_numpy(hero_X) for hero_X in m.fullGameData]

        pred = model(X)
        pred = torch.sigmoid(pred)
        pred = pred.cpu().detach().numpy()

        y = m.fullGameLabels




    currentMeanTrueAccuracy = 0
    currentMeanFalseAccuracy=0

    numTruePos = 0
    numFalsePos = 0
    numTrueNeg = 0
    numFalseNeg = 0
    for i in range(0,data.shape[0]):
        predX = 0
        for m in models:
            y = m.fullGameLabels[i]
            y = np.array(y)
            y = np.expand_dims(y,0)

            X = [torch.from_numpy(hero_X[i:(i+1),:]) for hero_X in m.fullGameData]
            print(i)
            #predX = averagePred(models,X)
            predX = modelPred(m.model,X) +predX


        predX = predX/len(models)

        '''
        true_pos = ((predX > 0.5) == (y > 0.5)).reshape(-1).astype(np.float32)
        true_neg = ((predX < 0.5) == (y <0.5)).reshape(-1).astype(np.float32)
        false_pos = ((predX > 0.5) == (y < 0.5)).reshape(-1).astype(np.float32)
        false_neg = ((predX < 0.5) == (y > 0.5)).reshape(-1).astype(np.float32)

        for pos in true_neg:
            if pos ==1:
                numTrueNeg +=1
        for pos in false_neg:
            if pos ==1:
                numFalseNeg +=1

        for pos in true_pos:
            if pos ==1:
                numTruePos +=1
        for pos in false_pos:
            if pos ==1:
                numFalsePos +=1
        '''


        prediction = predX
        currentMeanTrueAccuracy += np.mean(true_pos)
        currentMeanFalseAccuracy += np.mean(false_pos)

        prediction = np.squeeze(prediction,0)
        if i %3000 ==0:
            print('Current true pos ' +str(currentMeanTrueAccuracy/(i+1)))
            print('Current false pos ' +str(currentMeanFalseAccuracy/(i+1)))

        heroStuff.append(prediction)
        labelStuff.append(np.squeeze(y,0))

    print()
    print(numTruePos)
    print(numTrueNeg)
    print()
    print(numFalsePos)
    print(numFalseNeg)

    print()
    print('True Pos = ' + str(currentMeanTrueAccuracy/19326))
    print('False pos = ' + str(currentMeanFalseAccuracy/19326))

    heroStuff1 = np.swapaxes(heroStuff,0,1)
    labelStuff1= np.swapaxes(labelStuff,0,1)

    xLims = xLims - xLims[0] - 90

    np.save('hero.npy', np.array(heroStuff1))
    np.save('label.npy', np.array(labelStuff1))
    np.save('xLims.npy', np.array(xLims))
    np.save('health.npy',np.array(healthes))
コード例 #6
0
def train_pytorch():

    # is there a config in the current directory?
    config_path = "config.json"
    if not os.path.isfile("config.json"):
        # use default config
        config_path = os.path.dirname(
            os.path.realpath(__file__)) + "/config/default.json"

    with open(config_path) as f:
        config = commentjson.load(f)

    import pprint
    pp = pprint.PrettyPrinter(indent=4)
    pp.pprint(config)
    sys.stdout.flush()

    WHO_DIES_NEXT_MODE = config["predict_who_dies_next"]

    use_cuda = config["use_gpu"] == True and torch.cuda.is_available()
    device = torch.device("cuda:0" if use_cuda else "cpu")
    print("using device: ", device)

    model_type = locate(config["model"])
    get_feature_indicies_fn = locate(config["feature_set"])
    get_label_indicies_fn = locate(config["lable_set"])

    batch_size = config["batch_size"]
    print(type(batch_size))
    print(type(config["log_at_every_x_sample"]))
    epoch_size = int(config["log_at_every_x_sample"] / batch_size)
    print("epoch_size: ", epoch_size)
    checkpoint_frequency = int(config["chekpoint_at_every_x_sample"] /
                               (epoch_size * batch_size))
    validation_epoch_sice = config["validation_epoch_size"]

    if config["optimizer"] == "Adam":
        OptimizerType = torch.optim.Adam
    elif config["optimizer"] == "SGD":
        OptimizerType = torch.optim.SGD

    # YARCC
    #trainingDataFiles = glob.glob("/scratch/ak1774/data/train/*.h5")
    #validationDataFiles = glob.glob("/scratch/ak1774/data/validation/*.h5")

    # Viking
    trainingDataFiles = glob.glob(
        str(Path.cwd().parent / 'randomized_data' / 'train') + '/*.h5'
    )  #glob.glob("/mnt/lustre/groups/cs-dclabs-2019/esport/death_prediction_data/randomized_data/train/*.h5")
    validationDataFiles = glob.glob(
        str(Path.cwd().parent / 'randomized_data' / 'validation') + '/*.h5'
    )  #glob.glob("/mnt/lustre/groups/cs-dclabs-2019/esport/death_prediction_data/randomized_data/validation/*.h5")

    #trainingDataFiles = glob.glob("/scratch/staff/ak1774/shared_folder/data/train/*.h5")
    #validationDataFiles = glob.glob("/scratch/staff/ak1774/shared_folder/data/validation/*.h5")

    example_data = data_loader.load_data_from_file(trainingDataFiles[0])
    hero_feature_indicies = get_feature_indicies_fn(example_data)

    if WHO_DIES_NEXT_MODE == True:
        label_indicies = get_label_indicies_fn(example_data)
    else:
        #label_indicies = get_label_indicies_fn(example_data,config["label_set_arg"])
        label_indicies = get_label_indicies_fn(example_data)

    inputFeatureSize = len(hero_feature_indicies[0])
    outputFeatureSize = len(label_indicies)

    if WHO_DIES_NEXT_MODE == True and outputFeatureSize != 11:
        print("error, bad config, label set and prediction mode mismatch")
        raise "error, bad config, label set and prediction mode mismatch"
    elif WHO_DIES_NEXT_MODE == False and outputFeatureSize != 10:
        print("error, bad config, label set and prediction mode mismatch")
        raise "error, bad config, label set and prediction mode mismatch"

    # the dataset returns a batch when called (because we get the whole batch from one file), the batch size of the data loader thus is set to 1 (default)
    # epoch size is how many elements the iterator of the generator will provide, NOTE should not be too small, because it have a significant overhead p=0.05
    training_set = DotaDataset(
        file_list=trainingDataFiles,
        batch_size=batch_size,
        epoch_size=epoch_size,
        feature_indicies=hero_feature_indicies,
        label_indicies=label_indicies,
        who_dies_next_mode=WHO_DIES_NEXT_MODE,
        is_validation=False)  # set is validation to get death times...
    training_generator = torch.utils.data.DataLoader(
        training_set, num_workers=20, worker_init_fn=worker_init_fn)

    validation_set = DotaDataset(
        file_list=validationDataFiles,
        batch_size=batch_size,
        epoch_size=validation_epoch_sice,
        feature_indicies=hero_feature_indicies,
        label_indicies=label_indicies,
        who_dies_next_mode=WHO_DIES_NEXT_MODE,
        is_validation=False
    )  # actually we want the same distribution, so we can compare loss, so dont do anything differently in case of validation
    validation_generator = torch.utils.data.DataLoader(
        validation_set, num_workers=20, worker_init_fn=worker_init_fn)

    #model = models.SimpleFF(inputFeatureSize,outputFeatureSize)
    model = model_type(inputFeatureSize, outputFeatureSize,
                       **config["model_params"])
    model.to(device)
    print(model.final_layers)

    criterion = nn.CrossEntropyLoss()
    binary_classification_loss = torch.nn.BCELoss()
    optimizer = OptimizerType(model.parameters(), **config["optimizer_params"])

    if WHO_DIES_NEXT_MODE == True:

        all_train_losses = []
        all_train_accuracies = []
        all_train_kill_nokill_accuracies = []
        all_train_per_second_accuracies = []

        all_validation_losses = []
        all_validation_accuracies = []
        all_validation_kill_nokill_accuracies = []
        all_validation_per_second_accuracies = []

        for epoch_i in range(50000):

            now = time.time()

            np.random.seed(
            )  # reset seed   https://github.com/pytorch/pytorch/issues/5059  data loader returns the same values

            epoch_losses = []
            epoch_overall_accuracies = []
            epoch_kill_accuracies = []
            epoch_no_kill_accuracies = []
            epoch_one_sec_accuracies = []
            epoch_two_sec_accuracies = []
            epoch_three_sec_accuracies = []
            epoch_four_sec_accuracies = []
            epoch_five_sec_accuracies = []

            for sub_epoch_i, (X, y,
                              death_times) in enumerate(training_generator):

                # since we get a batch of size 1 of batch of real batch size, we take the 0th element
                X = [(hero_X[0, :]).to(device) for hero_X in X]
                y = torch.argmax(y[0, :], dim=1).to(device)
                death_times = death_times[0]

                # Forward + Backward + Optimize
                optimizer.zero_grad()
                output = model(X)

                loss = criterion(output, y)
                accuracy_vec = (torch.argmax(
                    output,
                    1) == y).cpu().numpy().reshape(-1).astype(np.float32)

                loss.backward()
                optimizer.step()

                epoch_losses.append(loss.cpu().detach().numpy().reshape(-1)[0])

                (overall_accuracy, (kill_accuracy, no_kill_accuracy),
                 (one_sec_accuracy, two_sec_accuracy, three_sec_accuracy,
                  four_sec_accuracy,
                  five_sec_accuracy)) = calculate_detailed_accuracies(
                      accuracy_vec, death_times, y)

                epoch_overall_accuracies.append(overall_accuracy)
                epoch_kill_accuracies.extend(kill_accuracy)
                epoch_no_kill_accuracies.extend(no_kill_accuracy)
                epoch_one_sec_accuracies.extend(one_sec_accuracy)
                epoch_two_sec_accuracies.extend(two_sec_accuracy)
                epoch_three_sec_accuracies.extend(three_sec_accuracy)
                epoch_four_sec_accuracies.extend(four_sec_accuracy)
                epoch_five_sec_accuracies.extend(five_sec_accuracy)

                if sub_epoch_i > 0 and (sub_epoch_i % 50) == 0:
                    print(
                        epoch_i, " ", sub_epoch_i, " loss: ",
                        np.array(epoch_losses[-49:]).mean(), " accuracy: ",
                        np.array(
                            epoch_overall_accuracies[(-49 *
                                                      y.shape[0]):]).mean())
                    sys.stdout.flush()

            all_train_losses.append(np.array(epoch_losses).mean())
            all_train_accuracies.append(
                np.array(epoch_overall_accuracies).mean())
            all_train_kill_nokill_accuracies.append(
                (np.array(epoch_kill_accuracies).mean(),
                 np.array(epoch_no_kill_accuracies).mean()))
            all_train_per_second_accuracies.append(
                (np.array(epoch_one_sec_accuracies).mean(),
                 np.array(epoch_two_sec_accuracies).mean(),
                 np.array(epoch_three_sec_accuracies).mean(),
                 np.array(epoch_four_sec_accuracies).mean(),
                 np.array(epoch_five_sec_accuracies).mean()))

            # reset logs for validation
            epoch_losses = []
            epoch_overall_accuracies = []
            epoch_kill_accuracies = []
            epoch_no_kill_accuracies = []
            epoch_one_sec_accuracies = []
            epoch_two_sec_accuracies = []
            epoch_three_sec_accuracies = []
            epoch_four_sec_accuracies = []
            epoch_five_sec_accuracies = []

            with torch.no_grad():
                for X, y, death_times in validation_generator:
                    X = [(hero_X[0, :]).to(device) for hero_X in X]
                    y = torch.argmax(y[0, :], dim=1).to(device)
                    death_times = death_times[0]

                    output = model(X)

                    loss = criterion(output, y)
                    accuracy_vec = (torch.argmax(
                        output,
                        1) == y).cpu().numpy().reshape(-1).astype(np.float32)

                    epoch_losses.append(
                        loss.cpu().detach().numpy().reshape(-1)[0])

                    (overall_accuracy, (kill_accuracy, no_kill_accuracy),
                     (one_sec_accuracy, two_sec_accuracy, three_sec_accuracy,
                      four_sec_accuracy,
                      five_sec_accuracy)) = calculate_detailed_accuracies(
                          accuracy_vec, death_times, y)

                    epoch_overall_accuracies.append(overall_accuracy)
                    epoch_kill_accuracies.extend(kill_accuracy)
                    epoch_no_kill_accuracies.extend(no_kill_accuracy)
                    epoch_one_sec_accuracies.extend(one_sec_accuracy)
                    epoch_two_sec_accuracies.extend(two_sec_accuracy)
                    epoch_three_sec_accuracies.extend(three_sec_accuracy)
                    epoch_four_sec_accuracies.extend(four_sec_accuracy)
                    epoch_five_sec_accuracies.extend(five_sec_accuracy)

            all_validation_losses.append(np.array(epoch_losses).mean())
            all_validation_accuracies.append(
                np.array(epoch_overall_accuracies).mean())
            all_validation_kill_nokill_accuracies.append(
                (np.array(epoch_kill_accuracies).mean(),
                 np.array(epoch_no_kill_accuracies).mean()))
            all_validation_per_second_accuracies.append(
                (np.array(epoch_one_sec_accuracies).mean(),
                 np.array(epoch_two_sec_accuracies).mean(),
                 np.array(epoch_three_sec_accuracies).mean(),
                 np.array(epoch_four_sec_accuracies).mean(),
                 np.array(epoch_five_sec_accuracies).mean()))

            # epoch over, checkpoint, report, check validation error
            print("Epoch done ", epoch_i, " loss: ",
                  np.array(epoch_losses).mean(), " accuracy: ",
                  np.array(epoch_overall_accuracies).mean())

            #print("all_train_kill_nokill_accuracies ",len(all_train_kill_nokill_accuracies))
            PlotValues((all_train_losses, all_validation_losses), "loss",
                       ["train", "validation"])
            PlotValues((all_train_accuracies, all_validation_accuracies),
                       "accuracy", ["train", "validation"])

            PlotValues((*zip(*all_train_kill_nokill_accuracies),
                        *zip(*all_validation_kill_nokill_accuracies)),
                       "accuracy_kill", [
                           "train_kill", "train_no_kill", "validation_kill",
                           "validation_no_kill"
                       ])

            sec_labels = ["1_sec", "2_sec", "3_sec", "4_sec", "5_sec"]
            PlotValues(
                (*zip(*all_train_per_second_accuracies),
                 *zip(*all_validation_per_second_accuracies)), "accuracy_sec",
                [
                    *["accuracy_train" + label for label in sec_labels],
                    *["accuracy_validation" + label for label in sec_labels]
                ])

            #np.save('losses.npy', np.array(mean_losses))
            #np.save('accuracies.npy', np.array(mean_accuracies))

            print("Epoch took: ", time.time() - now)
            sys.stdout.flush()

            #PlotValues(mean_validation_accuracies,"valid_accuracy")
            #PlotValues(mean_valid_overall_accuracies,"valid_overall_accuracy")

            #np.save('mean_valid_overall_accuracies.npy', np.array(mean_valid_overall_accuracies))
            #np.save('mean_validation_accuracies.npy', np.array(mean_validation_accuracies))

            if (epoch_i % 100) == 99:
                torch.save(model.state_dict(),
                           "model" + str(epoch_i) + ".model")

    else:  # Per player probability prediction

        all_train_losses = []
        all_train_accuracies = []
        all_train_target_accuracies = []
        all_train_die_notdie_accuracies = []
        all_train_per_sec_accuracies = [[] for _ in range(20)]
        all_train_per_sec_predictions = [[] for _ in range(20)]
        all_train_per_sec_predictions_std = [[] for _ in range(20)]

        all_validation_losses = []
        all_validation_accuracies = []

        all_validation_roc_scores = []
        all_validation_pr_scores = []

        for epoch_i in range(50000):

            now = time.time()

            np.random.seed(
            )  # reset seed   https://github.com/pytorch/pytorch/issues/5059  data loader returns the same values

            epoch_overall_loss = []
            epoch_overall_accuracy = []
            epoch_target_accuracy = []
            epoch_die_accuracy = []
            epoch_not_die_accuracy = []
            epoch_per_sec_accuracies = [[] for _ in range(20)]
            epoch_per_sec_predictions = [[] for _ in range(20)]

            for sub_epoch_i, (X, y, death_times,
                              player_i) in enumerate(training_generator):
                # since we get a batch of size 1 of batch of real batch size, we take the 0th element
                X = [(hero_X[0, :]).to(device) for hero_X in X]
                y = (y[0, :]).to(device)
                death_times = death_times[0]
                player_i = player_i[0].to(device)

                # Forward + Backward + Optimize
                optimizer.zero_grad()
                output = model(X)
                output = torch.sigmoid(output)
                output_np = output.cpu().detach().numpy()

                # only backpropagate the loss for player_i (so the training data is balanced)
                loss = binary_classification_loss(output[:, player_i],
                                                  y[:, player_i])

                loss.backward()
                optimizer.step()

                overall_loss = binary_classification_loss(
                    output, y).cpu().detach().numpy()
                epoch_overall_loss.append(overall_loss.reshape(-1).mean())
                accuracy_values = ((output > 0.5) == (
                    y > 0.5)).cpu().numpy().astype(np.float32)

                target_accuracy = ((output[:, player_i] > 0.5) == (
                    y[:, player_i] > 0.5)).cpu().numpy().reshape(-1).astype(
                        np.float32)

                die_accuracy_vec = ((output > 0.5) == (y > 0.5)).view(-1)[
                    y.view(-1) > 0.5].cpu().numpy().reshape(-1).astype(
                        np.float32)
                not_die_accuracy_vec = ((output > 0.5) == (y > 0.5)).view(-1)[
                    y.view(-1) < 0.5].cpu().numpy().reshape(-1).astype(
                        np.float32)

                epoch_overall_accuracy.append(
                    accuracy_values.reshape(-1).mean())
                epoch_target_accuracy.append(target_accuracy.mean())

                # these have varying size, so calculating the proper mean across batches takes more work
                epoch_die_accuracy.extend(die_accuracy_vec)
                epoch_not_die_accuracy.extend(not_die_accuracy_vec)

                death_times = death_times.cpu().numpy()
                #death_times[death_times < 0] = 1000.0 # make invalid death times a large number

                for timeslot_i in range(19):
                    mask_die_in_timeslot = np.logical_and(
                        (death_times > timeslot_i), (death_times <
                                                     (timeslot_i + 1)))
                    epoch_per_sec_accuracies[timeslot_i].extend(
                        accuracy_values[mask_die_in_timeslot].reshape(-1))
                    epoch_per_sec_predictions[timeslot_i].extend(
                        output_np[mask_die_in_timeslot].reshape(-1))

                # and the rest
                mask_die_in_timeslot = (death_times > 19)
                epoch_per_sec_accuracies[19].extend(
                    accuracy_values[mask_die_in_timeslot].reshape(-1))
                epoch_per_sec_predictions[19].extend(
                    output_np[mask_die_in_timeslot].reshape(-1))

                if sub_epoch_i > 0 and (sub_epoch_i % 50) == 0:
                    print(epoch_i, " ", sub_epoch_i, " loss: ",
                          np.array(epoch_overall_loss[-49:]).mean(),
                          " accuracy: ",
                          np.array(epoch_target_accuracy[-49:]).mean())
                    #for timeslot_i in range(19):
                    #    print("epoch_per_sec_predictions  ",len(epoch_per_sec_predictions[timeslot_i]))

                    #print("die accuracy: ",np.array(epoch_die_accuracy[-49:]).mean())
                    #print("not_die accuracy: ",np.array(epoch_not_die_accuracy[-49:]).mean())
                    sys.stdout.flush()

            if (epoch_i % 10) == 9:
                np.save('epoch_per_sec_predictions.npy',
                        np.array(epoch_per_sec_predictions))

            all_train_losses.append(np.array(epoch_overall_loss).mean())
            all_train_accuracies.append(
                np.array(epoch_overall_accuracy).mean())
            all_train_target_accuracies.append(
                np.array(epoch_target_accuracy).mean())
            all_train_die_notdie_accuracies.append(
                (np.array(die_accuracy_vec).mean(),
                 np.array(not_die_accuracy_vec).mean()))

            for timeslot_i in range(20):
                all_train_per_sec_accuracies[timeslot_i].append(
                    np.array(epoch_per_sec_accuracies[timeslot_i]).mean())
                all_train_per_sec_predictions[timeslot_i].append(
                    np.array(epoch_per_sec_predictions[timeslot_i]).mean())
                all_train_per_sec_predictions_std[timeslot_i].append(
                    np.array(epoch_per_sec_predictions[timeslot_i]).std())

            # VALIDATION EPOCH
            if (epoch_i % 3) == 0:

                epoch_overall_loss = []
                epoch_overall_accuracy = []

                epoch_all_pred = []
                epoch_all_y = []
                #epoch_die_accuracy = []
                #epoch_not_die_accuracy = []
                #epoch_per_sec_accuracies = [[] for _ in range(20)]
                #epoch_per_sec_predictions = [[] for _ in range(20)]

                with torch.no_grad():
                    for X, y, death_times, player_i in validation_generator:

                        X = [(hero_X[0, :]).to(device) for hero_X in X]
                        y = (y[0, :]).to(device)
                        death_times = death_times[0]

                        output = model(X)
                        output = torch.sigmoid(output)
                        output_np = output.cpu().detach().numpy()

                        epoch_overall_loss.append(
                            binary_classification_loss(
                                output,
                                y).cpu().detach().numpy().reshape(-1).mean())
                        accuracy_vec = ((output > 0.5) == (
                            y > 0.5)).cpu().numpy().reshape(-1).astype(
                                np.float32)
                        epoch_overall_accuracy.append(accuracy_vec.mean())

                        #death_times = death_times.cpu().numpy()

                        #for timeslot_i in range(19):
                        #   mask_die_in_timeslot = np.logical_and( (death_times > timeslot_i), (death_times < (timeslot_i+1)))
                        #   epoch_per_sec_accuracies[timeslot_i].extend(accuracy_values[mask_die_in_timeslot].reshape(-1))
                        #   epoch_per_sec_predictions[timeslot_i].extend(output_np[mask_die_in_timeslot].reshape(-1))

                        epoch_all_pred.extend(output_np.reshape(-1))
                        epoch_all_y.extend(y.cpu().numpy().reshape(-1))

                all_validation_roc_scores.append(
                    roc_auc_score(epoch_all_y, epoch_all_pred))
                all_validation_pr_scores.append(
                    average_precision_score(epoch_all_y, epoch_all_pred))

                all_validation_losses.append(
                    np.array(epoch_overall_loss).mean())
                all_validation_accuracies.append(
                    np.array(epoch_overall_accuracy).mean())
            else:
                # just copy the previous validation statistics, so we can plot it togeather with training statistics
                all_validation_losses.append(all_validation_losses[-1])
                all_validation_accuracies.append(all_validation_accuracies[-1])
                all_validation_roc_scores.append(all_validation_roc_scores[-1])
                all_validation_pr_scores.append(all_validation_pr_scores[-1])

            PlotValues((all_train_losses, all_validation_losses), "loss",
                       ["train", "validation"])
            PlotValues((all_train_accuracies, all_validation_accuracies),
                       "accuracy", ["train", "validation"])

            PlotValues((all_validation_roc_scores, ), "roc_score", ["roc"])
            PlotValues((all_validation_pr_scores, ), "pr_score", ["pr"])

            #PlotValues((all_train_losses,),"loss",["train"])
            #PlotValues((all_train_accuracies,),"accuracy",["train"])
            PlotValues((all_train_target_accuracies, ), "target_accuracy",
                       ["train"])

            PlotValues(
                ([vals[0] for vals in all_train_die_notdie_accuracies
                  ], [vals[1] for vals in all_train_die_notdie_accuracies]),
                "all_train_die_notdie_accuracies", ["die", "not_die"])

            PlotValues(all_train_per_sec_accuracies,
                       "all_train_per_sec_accuracies",
                       [str(time_i + 1) + "_sec" for time_i in range(20)])

            PlotWithStd(
                values=[vec[-1] for vec in all_train_per_sec_predictions],
                stds=[vec[-1] for vec in all_train_per_sec_predictions_std],
                legends=["per_sec predictions"],
                name="per_sec predictions")

            print("Epoch done ", epoch_i, " loss: ",
                  np.array(epoch_overall_loss).mean(), " accuracy: ",
                  np.array(epoch_target_accuracy).mean())
            print("Epoch took: ", time.time() - now)
            sys.stdout.flush()

            if (epoch_i % 10) == 9:
                np.save('all_train_per_sec_predictions.npy',
                        np.array(all_train_per_sec_predictions))
                np.save('all_train_per_sec_predictions_std.npy',
                        np.array(all_train_per_sec_predictions_std))

            if (epoch_i % 100) == 99:
                torch.save(model.state_dict(),
                           "model" + str(epoch_i) + ".model")
コード例 #7
0
def make_predictions(file, modelPath):
    trainingDataFiles = [
        'data.h5'
    ]  #glob.glob("/scratch/staff/ak1774/shared_folder/data/train/*.h5")

    config = get_config()
    get_feature_indicies_fn = locate(config["feature_set"])
    get_label_indicies_fn = locate(config["lable_set"])

    example_data = data_loader.load_data_from_file(trainingDataFiles[0])
    #hero_feature_indicies,label_indicies = get_feature_indicies_fn(example_data)
    hero_feature_indicies = get_feature_indicies_fn(example_data)
    label_indicies = get_label_indicies_fn(example_data)

    print(len(hero_feature_indicies))
    print(len(label_indicies))
    model = load_pytorch_model(modelPath, hero_feature_indicies,
                               label_indicies, config)
    #model = model.eval()

    print(model)
    data = data_loader.load_data_from_file(file)

    xLims = data['time'].values

    fullGameData, fullGameLabels = data_loader.getSequencialNaive(
        data, hero_feature_indicies, label_indicies)

    print(np.array(fullGameData).shape)

    windowData = []
    maxWindow = 20

    #torch.set_printoptions(precision=10)
    currentMeanAccuracy = 0
    for i in range(0, 19326):

        y = fullGameLabels[i]
        y = np.array(y)
        y = np.expand_dims(y, 0)

        X = [torch.from_numpy(hero_X[i:(i + 1), :]) for hero_X in fullGameData]

        predX = model(X)
        predX = torch.sigmoid(predX)

        predX = predX.cpu().detach().numpy()

        accuracy_vec = ((predX > 0.5) == (y > 0.5)).reshape(-1).astype(
            np.float32)

        currentMeanAccuracy += np.mean(accuracy_vec)

        prediction = predX
        prediction = np.squeeze(prediction, 0)
        #print(prediction)
        #print(prediction.shape)
        if i % 3000 == 0:
            print('Current mean ' + str(currentMeanAccuracy / (i + 1)))

        #print('----------------------')
        windowData.append(prediction)
        print(np.array(windowData).shape)

        if len(windowData) > maxWindow:
            windowData.pop(0)

        #(get_average(windowData,maxWindow,5,i,y))
        #(get_average(windowData,maxWindow,10,i,y))
        (get_average(windowData, maxWindow, 15, i, y))
        #(get_average(windowData,maxWindow,20,i,y))

    heroStuff1 = np.swapaxes(heroStuff, 0, 1)
    labelStuff1 = np.swapaxes(labelStuff, 0, 1)

    #heroStuff1 = heroStuff
    #labelStuff1 = labelStuff
    #x = arange(0,len(heroStuff1[0]))
    #x = np.array(x) /
    splitLower = 2500
    splitHigher = 3000

    xLims = xLims - xLims[0] - 90

    print(np.array(heroStuff1).shape)
    print(np.array(labelStuff1).shape)
    print(np.array(xLims).shape)
    '''
    heroStuff1 = heroStuff1[:,splitLower:splitHigher]
    labelStuff1 = labelStuff1[:,splitLower:splitHigher]
    xLims = xLims[splitLower:splitHigher]
    '''

    #print(heroStuff1[0])
    heroStuff1 = (heroStuff1 - 1)
    labelStuff1 = (labelStuff1 - 1) * -1
    #print(heroStuff1[0])
    #heroStuff1[:] = [x - 1 for x in heroStuff1]
    #labelStuff1[:] = [(x - 1) * -1 for x in labelStuff1]

    # 1:30 game start

    print(np.array(heroStuff1).shape)
    print(np.array(labelStuff1).shape)
    print(np.array(xLims).shape)
    #x = np.arange(194)
    #plt.subplots_adjust(hspace=100)
    #plt.xticks(np.arange(0,1,))

    #fig = plt.figure(figsize=(11,8))
    #ax1 = fig.add_subplot(111)
    #plt.yticks(np.arange(0, 1, step=1))
    for i in range(0, 10):
        #ax1 = fig.add_subplot(111)
        #ax1.plot(heroStuff1[i], label=1)
        #ax1.plot(labelStuff1[i], label=2)
        plt.subplot(10, 1, (i + 1))
        plt.plot(xLims, heroStuff1[i], color='red', linewidth=0.5)
        plt.plot(xLims, labelStuff1[i], color='blue', linewidth=0.5)
        #plt.title('Player ' + str(i))

    #ax1.legend(loc=2)

    plt.savefig('smooth_plot.eps')
コード例 #8
0
      " num matches is ", num_matches)
sys.stdout.flush()

all_y = [[] for model_path in modelPathList]
all_pred = [[] for model_path in modelPathList]

per_sec_pred = [[[] for _ in range(20)] for model_path in modelPathList]

for i in range(match_per_worker):
    match_index = first_match_index_for_this_task + i
    if match_index >= num_matches:
        continue

    print("Loading match ", match_index)

    data = data_loader.load_data_from_file(dataPathList[match_index])

    # get death times
    labels = [(i, label) for i, label in enumerate(list(data))]
    death_time_indicies = preprocess.labels_to_indicies(
        preprocess.select_features_by_name("time_until_next_death", labels))
    death_times = data.values[:, death_time_indicies].astype(np.float32)

    for model_i, (model_path,
                  config_path) in enumerate(zip(modelPathList,
                                                configPathList)):

        with open(config_path) as f:
            config = commentjson.load(f)

        modeldata = test_model.load_pytorch_model(model_path, config, data)
コード例 #9
0
    def get_predictions(self, prediction_type="regression"):

        if self.model == None:
            print 'no evaluation possible since no model was provided.'
            return

        try:
            model = serial.load(self.model)
        except Exception as e:
            print("error loading {}:".format(self.model))
            print(e)
            raise Exception("error loading {}:".format(self.model))

        X = model.get_input_space().make_theano_batch()
        Y = model.fprop(X)

        if prediction_type == "classification":
            Y = theanoTensor.argmax(Y, axis=1)
        else:
            assert prediction_type == "regression"

        f = theanoFunction([X], Y, allow_input_downcast=True)

        print("loading data and predicting...")

        data = data_loader.Data('test')
        if self.direction == 'reverse':
            input_data = data.response_data
            output_path = self.stimulus_data_path
            m, r, c = input_data.shape
            input_data = input_data.reshape((m, r, c, 1))
        elif self.direction == 'forward':
            input_data = data.stimulus_data
            output_path = self.response_data_path
        else:
            raise Exception(
                'Specify either "reverse" or "forward" as direction.')

        prediction = f(input_data)

        print("writing predictions...")

        if output_path[-4:] == '.mat':
            scipy.io.savemat(output_path, {'data': prediction})
        elif output_path[-4:] == '.txt':
            np.savetxt(output_path, prediction)
        elif output_path[-4:] == '.npy':
            np.save(output_path, prediction)
        else:
            raise Exception(
                'Only ".mat", ".txt" and ".npy" files are supported as data formats.'
            )

        #------------------------------------------------------------------------------
        # for testing
        #------------------------------------------------------------------------------
        if self.debug:
            try:
                test_output = np.squeeze(
                    data_loader.load_data_from_file(
                        'testUnattendedAudioOrg.mat'))
                test_predictions = np.squeeze(
                    data_loader.load_data_from_file(self.stimulus_data_path))
                print 'DEBUG: test_predictions.shape', test_predictions.shape, 'test_output.shape', test_output.shape
                print 'DEBUG: test_predictions.max', np.max(
                    test_predictions), np.argmax(test_predictions)
                print 'DEBUG: ', np.corrcoef(test_predictions, test_output)
            except:
                print 'Detailed correlation analysis only possible for the hello world example.'
                pass
コード例 #10
0
def main():
    #------------------------------------------------------------------------------
    # set parameters
    #------------------------------------------------------------------------------
    train_network = None
    yaml = None
    stimulus_data = None
    response_data = None
    weight_path = None
    visualize = False
    context_length = 25
    direction = 'reverse'
    valid_data_entries = -1  # this encodes the default to use all entries
    forking = False
    verbosity = 1
    debug = 0
    num_training_epochs = 100
    num_neurons = 5

    #------------------------------------------------------------------------------
    # parse arguments
    #------------------------------------------------------------------------------
    def usage():
        print 'Call python DNNRegression.py with the following arguments: \n', \
                '{--train, --predict} \n', \
                '-m model.yaml \n', \
                '-s stimulus_data  [i/o, default text, or .mat file] \n', \
                '-r response_data [i/o, default text, or .mat file] \n', \
                '-w weights [i/o, default text, or .pkl] \n', \
                '[--visual visualize.png] \n', \
                '[--context N  for N>=1   *25] \n', \
                '[--numEpochs N default is 100]', \
                '[--numNeurons N default is 5]', \
                '[--dir forward/reverse*] \n', \
                '[--valid  which parts are valid, in case of concatenating trials, default all valid.] \n', \
                '[--forking for matlab sake] \n'

    try:
        opts, _ = getopt.getopt(sys.argv[1:], "htpm:s:r:w:", [
            "help", "train", "predict", "model=", "stimulus=", "response=",
            "weights=", "visual=", "context=", "dir=", "valid=", "forking=",
            "verbosity=", "debug", "numEpochs=", "numNeurons=", "numChannels="
        ])
    except getopt.GetoptError as err:
        print str(err)  # will print something like "option -a not recognized"
        usage()
        sys.exit(2)

    for opt, arg in opts:
        if opt in ("-h", "--help"):
            usage()
            sys.exit()
        elif opt in ("-p", "--predict"):
            train_network = 0
        elif opt in ("-t", "--train"):
            train_network = 1
        elif opt in ("-m", "--model"):
            yaml = arg
        elif opt in ("-s", "--stimulus"):
            stimulus_data = arg
        elif opt in ("-r", "--response"):
            response_data = arg
        elif opt in ("-w", "--weights"):
            weight_path = arg
        elif opt in ("--visual"):
            visualize = arg
        elif opt in ("--context"):
            context_length = int(arg)
        elif opt in ("--numEpochs"):
            num_training_epochs = int(arg)
        elif opt in ("--numNeurons"):
            num_neurons = int(arg)
        elif opt in ("--dir"):
            direction = arg
        elif opt in ("--valid"):
            valid_data_entries = arg
        elif opt in ("--forking"):
            print "forking is not supported for now"


#             forking = True
        elif opt in ("--verbosity"):
            verbosity = arg
        elif opt in ("--debug"):
            debug = 1
        else:
            assert False, "unhandled option"

    if train_network is None:
        print 'You need to define wheter to predict outputs or to train the network.'
        usage()
        sys.exit(2)
    if yaml is None:
        print 'You need to define a valid model path / yaml file.'
        usage()
        sys.exit(2)
    if stimulus_data is None:
        print 'You need to define a valid stimulus data path.'
        usage()
        sys.exit(2)
    if response_data is None:
        print 'You need to define a valid response data path.'
        usage()
        sys.exit(2)
    if weight_path is None:
        print 'You need to define a valid path containing the weights of the mode.'
        usage()
        sys.exit(2)

    #------------------------------------------------------------------------------
    # Save environment for other parts of the DNN
    #------------------------------------------------------------------------------
    os.environ["EEGTOOLS_TRAIN_NETWORK"] = str(train_network)
    os.environ["EEGTOOLS_STIMULUS_DATA_PATH"] = stimulus_data
    os.environ["EEGTOOLS_RESPONSE_DATA_PATH"] = response_data
    os.environ["EEGTOOLS_VALID_DATA_PATH"] = str(valid_data_entries)
    os.environ["EEGTOOLS_CONTEXT_LENGTH"] = str(context_length)
    os.environ["EEGTOOLS_DIRECTION"] = direction
    os.environ["EEGTOOLS_DEBUG"] = str(debug)

    # determine number of channels from data
    if direction == 'forward':
        input_path = stimulus_data
    else:
        input_path = response_data
    input_data = data_loader.load_data_from_file(input_path)
    num_channels = input_data.shape[1]
    os.environ["EEGTOOLS_NUM_CHANNELS"] = str(num_channels)

    #------------------------------------------------------------------------------
    # Save imports for the YAML file
    #------------------------------------------------------------------------------
    pkl.dump(context_length, open('context_length.pkl', 'wb'))
    pkl.dump(num_training_epochs, open('num_training_epochs.pkl', 'wb'))
    pkl.dump(num_neurons, open('num_neurons.pkl', 'wb'))
    pkl.dump(num_channels, open('num_channels.pkl', 'wb'))

    #------------------------------------------------------------------------------
    # train / run DNN
    #------------------------------------------------------------------------------
    net = DNNregression(train_network, yaml, stimulus_data, response_data,
                        weight_path, visualize, context_length, direction,
                        valid_data_entries, forking, verbosity, debug)

    if net.train_network:
        net.train()
        net.save_weights()
    else:
        net.get_predictions()

    if net.visualize:
        net.show_weights()
コード例 #11
0
 def get_predictions(self, prediction_type="regression"):
         
     if self.model == None:
         print 'no evaluation possible since no model was provided.'
         return
         
     try:
         model = serial.load(self.model)
     except Exception as e:
         print("error loading {}:".format(self.model))
         print(e)
         raise Exception("error loading {}:".format(self.model))
  
     X = model.get_input_space().make_theano_batch()
     Y = model.fprop(X)
  
     if prediction_type == "classification":
         Y = theanoTensor.argmax(Y, axis=1)
     else:
         assert prediction_type == "regression"
  
     f = theanoFunction([X], Y, allow_input_downcast=True)
  
     print("loading data and predicting...")
  
     data = data_loader.Data('test')
     if self.direction == 'reverse':
         input_data = data.response_data
         output_path = self.stimulus_data_path
         m, r, c = input_data.shape
         input_data = input_data.reshape((m, r, c , 1))
     elif self.direction == 'forward':
         input_data = data.stimulus_data
         output_path = self.response_data_path
     else:
         raise Exception('Specify either "reverse" or "forward" as direction.')
  
     prediction = f(input_data)
  
     print("writing predictions...")
  
     if output_path[-4:] == '.mat':
         scipy.io.savemat(output_path, {'data': prediction})
     elif output_path[-4:] == '.txt':
         np.savetxt(output_path, prediction)
     elif output_path[-4:] == '.npy':
         np.save(output_path, prediction)
     else:
         raise Exception('Only ".mat", ".txt" and ".npy" files are supported as data formats.')
     
     
     #------------------------------------------------------------------------------ 
     # for testing
     #------------------------------------------------------------------------------ 
     if self.debug:
         try:
             test_output = np.squeeze(data_loader.load_data_from_file('testUnattendedAudioOrg.mat'))
             test_predictions = np.squeeze(data_loader.load_data_from_file(self.stimulus_data_path))
             print 'DEBUG: test_predictions.shape', test_predictions.shape, 'test_output.shape', test_output.shape
             print 'DEBUG: test_predictions.max', np.max(test_predictions), np.argmax(test_predictions)
             print 'DEBUG: ', np.corrcoef(test_predictions, test_output)
         except:
             print 'Detailed correlation analysis only possible for the hello world example.'
             pass
コード例 #12
0
# setup jupiter kernel with requirements
# import sys
# !{sys.executable} -m pip install numpy scipy eikon matplotlib cvxopt
"""Una volta predisposto l'ambiente, carichiamo i dati precedentemente scaricati da Eikon ed organizzati in file .json. Sono presenti quattro diversi scenari:


1.   Scenario 'assets-test.json': file utilizzato ai fini del testing del codice, 3 soli simboli, 6 soli periodi mensili, date corrette ma fittizie. Questo file è utile solo ai fini del testing del codice.
2.   Scenario 'assets-small.json': file di piccole dimensioni (periodo semestrale, simboli provenienti da DAX30, CAC40 ed IBEX 30, frequenza mensile)
3.   Scenario 'assets-large.json': file di medie dimensioni (periodo decennale, simboli provenienti da DAX30, CAC40 ed IBEX 30, frequenza mensile)
4.   Scenario 'assets-production.json': file di grandi dimensioni (periodo ventennale, simboli provenienti da DAX30, CAC40 ed IBEX 30, frequenza mensile)

Nel codice sono presenti funzionalità dedicate alla creazione e manipolazione di ulteriori insiemi di simboli e relativi performance temporali.
"""

# load data from file
ek_data_processed = dl.load_data_from_file('assets-test.json')
target_assets = ek_data_processed['target_assets']
print("Assets list: ")
print(target_assets)
print("Date from: " + ek_data_processed["start_date"])
print("Date to: " + ek_data_processed["end_date"])
print("Number of assets: " + str(len(target_assets)))
print("Number of time samples: " +
      str(len(ek_data_processed[target_assets[0]])))
"""## Assets
Vengono qui caricati il RIC dell'asset e la relativa serie temporale di ritorni menili %.
```
assets.add_or_modify_asset(asset_name, ek_data_processed[asset_name])
```
Una volta caricati tutti gli asset viene calcolata la matrice di covarianza.
```
コード例 #13
0
def main():
    #------------------------------------------------------------------------------ 
    # set parameters
    #------------------------------------------------------------------------------ 
    train_network = None
    yaml = None
    stimulus_data = None
    response_data = None
    weight_path = None
    visualize = False
    context_length = 25
    direction = 'reverse'
    valid_data_entries = -1 # this encodes the default to use all entries
    forking = False
    verbosity = 1
    debug = 0
    num_training_epochs = 100
    num_neurons = 5
        
    #------------------------------------------------------------------------------ 
    # parse arguments
    #------------------------------------------------------------------------------ 
    def usage():
        print 'Call python DNNRegression.py with the following arguments: \n', \
                '{--train, --predict} \n', \
                '-m model.yaml \n', \
                '-s stimulus_data  [i/o, default text, or .mat file] \n', \
                '-r response_data [i/o, default text, or .mat file] \n', \
                '-w weights [i/o, default text, or .pkl] \n', \
                '[--visual visualize.png] \n', \
                '[--context N  for N>=1   *25] \n', \
                '[--numEpochs N default is 100]', \
                '[--numNeurons N default is 5]', \
                '[--dir forward/reverse*] \n', \
                '[--valid  which parts are valid, in case of concatenating trials, default all valid.] \n', \
                '[--forking for matlab sake] \n'
                
                
    try:
        opts, _ = getopt.getopt(sys.argv[1:], 
                                "htpm:s:r:w:", ["help", "train", "predict", "model=", 
                                                "stimulus=", "response=", "weights=", 
                                                "visual=", "context=", "dir=", "valid=", 
                                                "forking=", "verbosity=", "debug", 
                                                "numEpochs=", "numNeurons=", "numChannels="])
    except getopt.GetoptError as err:
        print str(err) # will print something like "option -a not recognized"
        usage()
        sys.exit(2)
        
    for opt, arg in opts:
        if opt in ("-h", "--help"):
            usage()
            sys.exit()
        elif opt in ("-p", "--predict"):
            train_network = 0
        elif opt in ("-t", "--train"):
            train_network = 1
        elif opt in ("-m", "--model"):
            yaml = arg
        elif opt in ("-s", "--stimulus"):
            stimulus_data = arg
        elif opt in ("-r", "--response"):
            response_data = arg
        elif opt in ("-w", "--weights"):
            weight_path = arg
        elif opt in ("--visual"):
            visualize = arg
        elif opt in ("--context"):
            context_length = int(arg)
        elif opt in ("--numEpochs"):
            num_training_epochs = int(arg)
        elif opt in ("--numNeurons"):
            num_neurons = int(arg)
        elif opt in ("--dir"):
            direction = arg
        elif opt in ("--valid"):
            valid_data_entries = arg
        elif opt in ("--forking"):
            print "forking is not supported for now"
#             forking = True
        elif opt in ("--verbosity"):
            verbosity = arg
        elif opt in ("--debug"):
            debug = 1
        else:
            assert False, "unhandled option"
            
    if train_network is None:
        print 'You need to define wheter to predict outputs or to train the network.'
        usage()
        sys.exit(2)
    if yaml is None:
        print 'You need to define a valid model path / yaml file.'
        usage()
        sys.exit(2)
    if stimulus_data is None:
        print 'You need to define a valid stimulus data path.'
        usage()
        sys.exit(2)
    if response_data is None:
        print 'You need to define a valid response data path.'
        usage()
        sys.exit(2)
    if weight_path is None:
        print 'You need to define a valid path containing the weights of the mode.'
        usage()
        sys.exit(2)
    
    
    #------------------------------------------------------------------------------ 
    # Save environment for other parts of the DNN
    #------------------------------------------------------------------------------ 
    os.environ["EEGTOOLS_TRAIN_NETWORK"] = str(train_network)
    os.environ["EEGTOOLS_STIMULUS_DATA_PATH"] = stimulus_data
    os.environ["EEGTOOLS_RESPONSE_DATA_PATH"] = response_data
    os.environ["EEGTOOLS_VALID_DATA_PATH"] = str(valid_data_entries)
    os.environ["EEGTOOLS_CONTEXT_LENGTH"] = str(context_length)
    os.environ["EEGTOOLS_DIRECTION"] = direction
    os.environ["EEGTOOLS_DEBUG"] = str(debug)
    
    # determine number of channels from data
    if direction == 'forward':
        input_path = stimulus_data
    else:
        input_path = response_data
    input_data = data_loader.load_data_from_file(input_path)
    num_channels = input_data.shape[1]
    os.environ["EEGTOOLS_NUM_CHANNELS"] = str(num_channels)
    
    #------------------------------------------------------------------------------ 
    # Save imports for the YAML file
    #------------------------------------------------------------------------------ 
    pkl.dump(context_length, open( 'context_length.pkl', 'wb'))
    pkl.dump(num_training_epochs, open( 'num_training_epochs.pkl', 'wb'))
    pkl.dump(num_neurons, open( 'num_neurons.pkl', 'wb'))
    pkl.dump(num_channels, open( 'num_channels.pkl', 'wb'))
    
    #------------------------------------------------------------------------------ 
    # train / run DNN
    #------------------------------------------------------------------------------ 
    net = DNNregression(train_network, yaml, stimulus_data, response_data, 
                 weight_path, visualize, context_length, direction,
                 valid_data_entries, forking, verbosity, debug)
    
    if net.train_network:
        net.train()
        net.save_weights()
    else:
        net.get_predictions()
        
    if net.visualize:
        net.show_weights()