plt.plot(list(range(num_train)), train_x, color='b', label='training data') plt.plot(list(range(num_train + len(valid), num_train + len(valid) + len(test))), test, color='y', label='predicted') plt.plot(list(range(num_train, num_train + len(valid))), valid, color='g', label='test data') plt.plot(list(range(num_train + len(valid), num_train + len(valid) + len(predictions))), predictions, color='r', label='predicted') plt.legend() #if filename is not None: # plt.savefig(filename) #else: plt.show() if __name__ == '__main__': seq_size = 20 ##Performing all the data operations predictor = SeriesPredictor(input_dim = 1, seq_size = seq_size, hidden_dim = 100) data = data_loader.load_series('datanew.csv') train_data, valid_data, test_data = data_loader.split_data(data) ''' print("How Train data looks like") for i in range(10): print(train_data[i]) ''' ##Here we are making the data s.t the output at every time step is the value for the next time-step train_x, train_y = [], [] for i in range(len(train_data) - seq_size - 1): ##Expand_dims is used since we have to feed the network with an input that has first dimension as batch_size, second dimension as seq_length and third ##dimension as input_dim ##The first dimension is fulfilled by appending many lists to train_x, third dimension is fulfilled by using expand_dims
label='predicted') plt.plot(list(range(num_train, num_train + len(actual))), actual, color='g', label='test data') plt.legend() # 图例 if filename is not None: plt.savefig(filename) else: plt.show() if __name__ == '__main__': seq_size = 5 predictor = SeriesPredictor(input_dim=1, seq_size=seq_size, hidden_dim=100) data = data_loader.load_series('international-airline-passengers.csv') train_data, actual_vals = data_loader.split_data(data) train_x, train_y = [], [] # for i in range(len(train_data) - seq_size - 1): # num - window_size + 1 for i in range(len(train_data) - seq_size): train_x.append( np.expand_dims( train_data[i:i + seq_size], axis=1).tolist()) # shape=(batch, seq_size, input_dim) train_y.append(train_data[i + 1:i + seq_size + 1]) test_x, test_y = [], [] # for i in range(len(actual_vals) - seq_size - 1): for i in range(len(actual_vals) - seq_size): # temp = np.expand_dims(actual_vals[i:i + seq_size], axis=1) # shape=(5, 1)
plt.figure() num_train = len(train_x) plt.plot(list(range(num_train)), train_x, color='b', label='training data') plt.plot(list(range(num_train, num_train + len(predictions))), predictions, color='r', label='predicted') plt.plot(list(range(num_train, num_train + len(actual))), actual, color='g', label='test data') plt.legend() if filename is not None: plt.savefig(filename) else: plt.show() if __name__ == '__main__': seq_size = 5 predictor = SeriesPredictor(input_dim=1, seq_size=seq_size, hidden_dim=5) data = data_loader.load_series('international-airline-passengers.csv') train_data, actual_vals = data_loader.split_data(data) train_x, train_y = [], [] for i in range(len(train_data) - seq_size - 1): train_x.append(np.expand_dims(train_data[i:i+seq_size], axis=1).tolist()) train_y.append(train_data[i+1:i+seq_size+1]) test_x, test_y = [], [] for i in range(len(actual_vals) - seq_size - 1): test_x.append(np.expand_dims(actual_vals[i:i+seq_size], axis=1).tolist()) test_y.append(actual_vals[i+1:i+seq_size+1]) predictor.train(train_x, train_y, test_x, test_y) with tf.Session() as sess:
color='r', label='predicted') plt.plot(list(range(num_train, num_train + len(actual))), actual, color='g', label='test data') plt.legend() plt.show() if __name__ == '__main__': mode = 2 #0训练 1继续训练 2看结果 seq_size = 60 predictor = SeriesPredictor(input_dim=5, seq_size=seq_size, hidden_dim=50) data = data_loader.load_series('data_test.txt') train_data, actual_vals, sample = data_loader.split_data(data, seq_size) # print(train_data) # print(np.shape(train_data)) train_x, train_y = [], [] for i in range(len(train_data) - seq_size - 1): train_x.append(train_data[i:i + seq_size]) train_y.append(train_data[i + seq_size + 1]) # print(np.shape(train_x),np.shape(train_y)) # print(train_y) # print(np.shape(train_y)) test_x, test_y = [], [] for i in range(len(actual_vals) - seq_size - 1): test_x.append(actual_vals[i:i + seq_size]) test_y.append(actual_vals[i + seq_size + 1])
# Idk why its changing file_increment_num in gz_unzip, it shouldnt, and even though i put a placeholder it still does channel_converted_value, channel_last_timestamp = create_lists_ccv_clt( file_increment_num, 27) channel_last_datetime = unix_timestamp_to_datetime(channel_last_timestamp) """ f = open('clt_ccv.csv', 'w') for x,y in zip(channel_last_timestamp,channel_converted_value): f.write(str(x) + "," + str(y) +'\n') f.close() """ seq_size = 5 predictor = SeriesPredictor(input_dim=1, seq_size=seq_size, hidden_dim=100) data = data_loader.load_series('2_ccv_clt.csv') train_data, actual_vals = data_loader.split_data(data) reconditioned_data = data_loader.recondition_data(data) train_data_reconditioned, actual_vals_reconditioned = data_loader.split_data( reconditioned_data) train_data, actual_vals = data_loader.split_data(data) train_x, train_y = [], [] for i in range(len(train_data) - seq_size - 1): train_x.append( np.expand_dims(train_data[i:i + seq_size], axis=1).tolist()) train_y.append(train_data[i + 1:i + seq_size + 1]) test_x, test_y = [], [] for i in range(len(actual_vals) - seq_size - 1):