コード例 #1
0
def test(model, config, word_to_id, cat_to_id, id_to_cat):
    print("Loading test data_loaders...")
    start_time = time.time()
    x_test, y_test = process_file(config.test_dir, word_to_id, cat_to_id,
                                  config.seq_length)

    with tf.Session() as session:
        session.run(tf.global_variables_initializer())
        saver = tf.train.Saver()
        # 读取保存的模型
        saver.restore(sess=session, save_path=config.save_dir)

        print('Testing...')
        loss_test, acc_test = evaluate(session, model, x_test, y_test)
        msg = 'Test Loss: {0:>6.2}, Test Acc: {1:>7.2%}'
        print(msg.format(loss_test, acc_test))

        batch_size = 128
        data_len = len(x_test)
        num_batch = int((data_len - 1) / batch_size) + 1

        y_test_cls = np.argmax(y_test, 1)
        # 用于存储预测结果
        y_pred_cls = np.zeros(shape=len(x_test), dtype=np.int32)

        # 逐批次处理
        for i in range(num_batch):
            start_id = i * batch_size
            end_id = min((i + 1) * batch_size, data_len)
            feed_dict = {
                model.input_x: x_test[start_id:end_id],
                model.keep_prob: 1.0
            }
            y_pred_cls[start_id:end_id] = session.run(model.y_pred_cls,
                                                      feed_dict=feed_dict)

        # 评估
        print("PRF:")
        print(
            metrics.classification_report(y_test_cls,
                                          y_pred_cls,
                                          target_names=id_to_cat))

        # 混淆矩阵
        print("Confusion Matrix:")
        print("Truth \ Prediction")
        cm = metrics.confusion_matrix(y_test_cls, y_pred_cls)
        print(cm)

        time_dif = get_time_dif(start_time)
        print("Time usage:", time_dif)
コード例 #2
0
def train(model, config, word_to_id, cat_to_id):
    print("Configuring TensorBoard and Saver...")
    # 配置 Tensorboard,重新训练时,请将tensorboard文件夹删除,不然图会覆盖
    tensorboard_dir = config.tensorboard_dir
    if not os.path.exists(tensorboard_dir):
        os.makedirs(tensorboard_dir)

    tf.summary.scalar("loss", model.loss)
    tf.summary.scalar("accuracy", model.acc)
    merged_summary = tf.summary.merge_all()
    writer = tf.summary.FileWriter(tensorboard_dir)

    # 配置 Saver
    saver = tf.train.Saver()
    if not os.path.exists(config.save_dir):
        os.makedirs(config.save_dir)

    print("Loading training and validation data_loaders...")
    # 载入训练集与验证集
    start_time = time.time()
    x_train, y_train = process_file(config.train_dir, word_to_id, cat_to_id,
                                    config.seq_length)
    x_val, y_val = process_file(config.val_dir, word_to_id, cat_to_id,
                                config.seq_length)
    time_dif = get_time_dif(start_time)
    print("Time usage:", time_dif)

    # 创建session
    with tf.Session() as session:
        session.run(tf.global_variables_initializer())
        writer.add_graph(session.graph)

        print('Training and evaluating...')
        start_time = time.time()
        total_batch = 0  # 已训练的总批次
        best_acc_val = 0.0  # 最佳验证集准确率
        last_improved = 0  # 记录上一次有提升是第几个批次
        require_improvement = 1000  # 如果超过1000个批次未提升,提前结束训练

        flag = False
        for epoch in range(config.num_epochs):
            print('Epoch:', epoch + 1)
            batch_train = batch_iter(x_train, y_train, config.batch_size)
            for x_batch, y_batch in batch_train:
                feed_dict = create_feed_dict(model, x_batch, y_batch,
                                             config.dropout_keep_prob)

                session.run(model.optim, feed_dict=feed_dict)  # 运行优化
                total_batch += 1

                if total_batch % config.save_per_batch == 0:
                    # 每多少轮次将训练结果写入tensorboard scalar
                    s = session.run(merged_summary, feed_dict=feed_dict)
                    writer.add_summary(s, total_batch)

                if total_batch % config.print_per_batch == 0:
                    # 每多少轮次输出在训练集和验证集上的性能
                    feed_dict[model.keep_prob] = 1.0
                    loss_train, acc_train = session.run(
                        [model.loss, model.acc], feed_dict=feed_dict)
                    loss_val, acc_val = evaluate(session, model, x_val, y_val)

                    if acc_val > best_acc_val:
                        # 保存最好结果
                        best_acc_val = acc_val
                        last_improved = total_batch
                        saver.save(sess=session, save_path=config.save_dir)
                        improved_str = '*'
                    else:
                        improved_str = ''

                    time_dif = get_time_dif(start_time)
                    msg = 'Iter: {0:>6}, Train Loss: {1:>6.2}, Train Acc: {2:>7.2%},' \
                          + ' Val Loss: {3:>6.2}, Val Acc: {4:>7.2%}, Time: {5} {6}'
                    print(
                        msg.format(total_batch, loss_train, acc_train,
                                   loss_val, acc_val, time_dif, improved_str))

                if total_batch - last_improved > require_improvement:
                    # 验证集正确率长期不提升,提前结束训练
                    print("No optimization for a long time, auto-stopping...")
                    flag = True
                    break  # 跳出循环
            if flag:  # 同上
                break