TASK_NAME = 'UNet_training_generator_{}epochs'.format(N_EPOCHS) TASK_FOLDER_PATH = os.path.join(CHECKPOINT_FOLDER_PATH, TASK_NAME) if not os.path.exists(TASK_FOLDER_PATH): os.makedirs(TASK_FOLDER_PATH) #TRAINING_WEIGHTS_FILEPATH = os.path.join(TASK_FOLDER_PATH, # '{}_weights_training{}.hdf5'.format(model.name, TASK_NAME)) TRAINING_WEIGHTS_FILEPATH = os.path.join(CHECKPOINT_FOLDER_PATH, 'retrained_UNet_500+250epochs.hdf5') fname_test = [os.path.join(TRAIN_VAL_TEST_DIR, "Xy_test.npz")] model.load_weights(TRAINING_WEIGHTS_FILEPATH) prediction_steps, n_evts_test = get_n_iterations(fname_test, batch_size=BATCH_SIZE) print("prediction steps per epoch:{}, n events:{}".format( prediction_steps, n_evts_test)) print('INFERENCE STEP') parallel_model = multi_gpu_model(model, gpus=2) test_data_gen = data_generator(fname_test, batch_size=BATCH_SIZE, ftarget=lambda y: y) def inference_step(network_model, test_data_generator, predict_steps): y_pred = list()
TRAINING_WEIGHTS_FILEPATH = os.path.join( TASK_FOLDER_PATH, '{}_weights_training{}.hdf5'.format(model.name, TASK_NAME)) HISTORY_FILEPATH = os.path.join( TASK_FOLDER_PATH, '{}_history{}.pkl'.format(model.name, TASK_NAME)) MODEL_JSON_FILEPATH = os.path.join(TASK_FOLDER_PATH, '{}.json'.format(model.name)) fname_train = [ os.path.join(TRAIN_VAL_TEST_DIR, "Xy_train_stratified_dist.npz") ] fname_val = [os.path.join(TRAIN_VAL_TEST_DIR, "Xy_val_stratified_dist.npz")] steps_per_epoch, n_events = get_n_iterations(fname_train, batch_size=BATCH_SIZE) print("training steps per epoc:{}, number of events:{}".format( steps_per_epoch, n_events)) validation_steps, n_evts_val = get_n_iterations(fname_val, batch_size=BATCH_SIZE) print("validation steps per epoch:{}, number of events:{}".format( validation_steps, n_evts_val)) def ohe(values): values_reshaped = values.reshape(-1, 1) onehot_encoder = OneHotEncoder(sparse=False) onehot_encoded = onehot_encoder.fit_transform(values_reshaped) return onehot_encoded