def norm_pca3(x, y): if data_loading.dataframe_already_exists(constants.OUTPUT_DATA_PROC_PATH, DATA_PCA3): return None y = y.reset_index(drop=True) norm_df = _normalize(x) pca_df = _pca(norm_df, 3) joined_df = pd.concat((norm_df, pca_df, y), axis=1) assert norm_df.shape[0] == pca_df.shape[0] == joined_df.shape[0] data_loading.save_data(joined_df, constants.OUTPUT_DATA_PROC_PATH, DATA_PCA3)
def norm_tsne2(x, y): if data_loading.dataframe_already_exists(constants.OUTPUT_DATA_PROC_PATH, DATA_TSNE2): return None y = y.reset_index(drop=True) norm_df = _normalize(x) tsne_df = _tsne(norm_df, 2) joined_df = pd.concat((norm_df, tsne_df, y), axis=1) assert norm_df.shape[0] == tsne_df.shape[0] == joined_df.shape[0] data_loading.save_data(joined_df, constants.OUTPUT_DATA_PROC_PATH, DATA_TSNE2)
def no_transform(dataframe): if data_loading.dataframe_already_exists(constants.OUTPUT_DATA_PROC_PATH, DATA_VANILLA): return None data_loading.save_data(dataframe, constants.OUTPUT_DATA_PROC_PATH, DATA_VANILLA)