def _prepare_X(self, X_raw): X_raw, self.bad_movie_indexes = remove_bad_movies( X_raw, self.bad_movie_indexes) X, _ = fill_ratings_with_mean_per_user(X_raw) X = X[:, 1, :] # only ratings return X.reshape(X.shape[0], -1)
def _prepare_X(self, X_raw, train = True): X_raw, self.bad_movie_indexes = remove_bad_movies(X_raw, self.bad_movie_indexes) X, _ = fill_ratings_with_mean_per_user(X_raw) X = X[:,1,:] # only ratings X = X.reshape(X.shape[0], -1) if train: self.release_date = np.min(X_raw[:,2,0]) X = np.hstack((X, diff_in_time_to_rate_target_movie(X_raw, self.release_date))) return X
def _prepare_X(self, X_raw, Y=None, train=False): X_raw, self.bad_movie_indexes = remove_bad_movies( X_raw, self.bad_movie_indexes) X, _ = fill_ratings_with_mean_per_user(X_raw) X = X[:, 1, :] # only ratings if train: self.scaler.fit(X) X_rescaled = self.scaler.transform(X) if train: self.pca = PCA(n_components=75).fit(X_rescaled) X_components = self.pca.transform(X_rescaled) return X_components.reshape(X.shape[0], -1)