コード例 #1
0
ファイル: robust_svm.py プロジェクト: CrystalSNS/my_data
isTr = 1
for i in range (2,3) :
    X = read_data("Xtr"+str(i), isTr)
    Y = read_data("Ytr"+str(i), isTr)
    max_info = ""
    max_predic = 0
    
    Y['Bound'][Y['Bound'] == 0] = -1
     
    #f= open("/Users/noch/Documents/workspace/data_challenge/result/console_svm_ker_gaussi_C_big.txt","a+")       
    #f= open("/home/jibril/Desktop/data_challenge/result/console_svm_ker_gaussi.txt","a+")   
    print("\n testing on Xtr" +str(i)+ ", Ytr" +str(i))
    
    for k in range(2,5):
        print("\n number of char:"+str(k+1))
        data_new = prepare_data_div(X, k+1)
        
        data_new['Bound'] = Y['Bound']
        
        data_train,  data_test = split_data(data_new, 70)
        
        X_train = data_train.iloc[:,:-1]
        Y_tr = pd.DataFrame.as_matrix(data_train['Bound']).astype(float).tolist()
        
        X_te = pd.DataFrame.as_matrix(data_test.iloc[:,:-1])
        Y_te = pd.DataFrame.as_matrix(data_test['Bound']).astype(float).tolist()
        
        
        print("\n finished preparing number of char:" + str(k+1))
            
        gamma_arr = [100, 20, 10, 1, 0.1, 0.01]
コード例 #2
0
nm_char = [6, 6, 5]
lmda = [10**(-5), 0.0001, 10**(-5)]
epoch = [400000, 300000, 300000]

for i in range(3):
    isTr = 1
    Xtr = read_data("Xtr" + str(i), isTr)
    Ytr = read_data("Ytr" + str(i), isTr)
    Ytr['Bound'][Ytr['Bound'] == 0] = -1

    isTr = 0
    Xte = read_data("Xte" + str(i), isTr)
    Xte['Id'] = pd.DataFrame({'Id': range(i * 1000, (i + 1) * 1000)})
    print("preparing data:" + str(i))
    Xtr_p = prepare_data_div(Xtr, nm_char[i])
    Xtr_p['Bound'] = Ytr['Bound']

    Xte_p = prepare_data_div(pd.DataFrame(Xte['DNA']), nm_char[i])
    Xte_p['Id'] = Xte['Id']

    Xtr_p = Xtr_p.sample(frac=1)

    X_tr = pd.DataFrame.as_matrix(Xtr_p.iloc[:, :-1])
    Y_tr = pd.DataFrame.as_matrix(Xtr_p['Bound']).astype(float).tolist()

    print("training on data:" + str(i))
    w, b = pegasos_(X_tr, Y_tr, lmda[i], epoch[i])

    print("testing on data:" + str(i))
    result = test_with_id(w, b, Xte_p)
コード例 #3
0
ファイル: adaboost.py プロジェクト: CrystalSNS/my_data
Alpha = []
Y_all_te = []
Y_all_tr = []

D = 0
epoch = [500000, 400000, 400000, 300000, 200000, 500000]
lmda = [1e-05, 1e-05, 0.0001, 0.0001, 0.0001, 1e-05]
num_char = [5, 5, 5, 5, 5, 6]

for t in range(5):

    epsl = 0
    Z = 0

    print("... is training on classifier pegasos" + str(t))
    X_tr = prepare_data_div(X_train, num_char[t])
    X_tr = pd.DataFrame.as_matrix(X_tr)
    D = 1 / len(X_tr)

    X_te = prepare_data_div(X_test, num_char[t])
    X_te = pd.DataFrame.as_matrix(X_te)

    #based-classifier
    w, b = pegasos_(X_tr, Y_tr, lmda[t], epoch[t])

    Y_pre_tr = predict_pegasos(w, b, X_tr)
    Y_pre_te = predict_pegasos(w, b, X_te)

    predicted_sco_tr = accuracy_score(Y_pre_tr, Y_tr,
                                      normalize=False) / len(Y_pre_tr)
    print("predicted_score_tr:" + str(predicted_sco_tr))