def main(): # Seed all sources of randomness to 0 for reproducibility np.random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed(0) random.seed(0) opt = Opts().parse() # Create data loaders train_loader, test_loader = create_data_loaders(opt) # Create nn model, criterion_hm, criterion_paf, latest_inx = create_model(opt) model = model.cuda() criterion_hm = criterion_hm.cuda() criterion_paf = criterion_paf.cuda() # Create optimizer optimizer = create_optimizer(opt, model) # Other params n_epochs = opt.nEpoch to_train = opt.train drop_lr = opt.dropLR val_interval = opt.valInterval learn_rate = opt.LR visualize_out = opt.vizOut # train/ test train_net(train_loader, test_loader, model, criterion_hm, criterion_paf, optimizer, n_epochs, val_interval, learn_rate, drop_lr, opt.saveDir, visualize_out, latest_inx)
def main(): # Seed all sources of randomness to 0 for reproducibility np.random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed(0) random.seed(0) opt = Opts().parse() # Create data loaders train_loader, test_loader = create_data_loaders(opt) # Create nn model, criterion_hm, criterion_paf, latest_inx = create_model(opt) # model = model.cuda() # criterion_hm = criterion_hm.cuda() # criterion_paf = criterion_paf.cuda() # Create optimizer optimizer = create_optimizer(opt, model) # Other params n_epochs = opt.nEpoch to_train = opt.train drop_lr = opt.dropLR val_interval = opt.valInterval learn_rate = opt.LR visualize_out = opt.vizOut # train/ test img, heat_map, paf, ignore_mask, keypoints = test_loader.dataset.get_item_raw(0, False)
def main(): # Seed all sources of randomness to 0 for reproducibility np.random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed(0) random.seed(0) opt = Opts().parse() os.environ["CUDA_VISIBLE_DEVICES"] = opt["env"]["device"] print("Using GPU: {}".format(opt["env"]["device"])) # Create data loaders if opt["to_test"]: _, _, test_loader = create_data_loaders(opt) else: _, test_loader = create_data_loaders(opt) # Create nn model, _, _ = create_model(opt) model = model.cuda() # Get nn outputs outputs, indices = eval_net(test_loader, model, opt) if opt["val"]["dataset"] == 'coco': eval_COCO(outputs, opt["env"]["data"], indices, opt)
def main(): # Seed all sources of randomness to 0 for reproducibility np.random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed(0) random.seed(0) opt = Opts().parse() # Create data loaders _, test_loader = create_data_loaders(opt) # Create nn model, _, _ = create_model(opt) model = model.cuda() # Get nn outputs outputs, indices = eval_net(test_loader, model, opt) if opt.dataset == 'coco': eval_COCO(outputs, opt.data, indices)
def main(): # Seed all sources of randomness to 0 for reproducibility np.random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed(0) random.seed(0) opt = Opts().parse() opt.dataset = 'mine' opt.batchSize = 1 opt.data = './data' opt.nThreads = 0 opt.device = device fnames = ['test.jpg'] # Create data loaders _, test_loader = create_data_loaders(opt, fnames) # Create nn model, _, _ = create_model(opt).to(opt.device) # output result images test_net(test_loader, model, opt)
def main(): # Seed all sources of randomness to 0 for reproducibility np.random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed(0) random.seed(0) opt = Opts().parse() os.environ["CUDA_VISIBLE_DEVICES"] = opt["env"]["device"] print("Using GPU: {}".format(opt["env"]["device"])) # Create data loaders # Create data loaders train_loader, test_loader, _ = create_data_loaders(opt) # Create nn model, criterion_hm, criterion_paf = create_model(opt) model = torch.nn.DataParallel(model, device_ids=[int(index) for index in opt["env"]["device"].split(",")]).cuda() \ if "," in opt["env"]["device"] else model.cuda() if opt["env"]["loadModel"] is not None and opt["typ"] == 'cpr': model.load_state_dict(torch.load(opt["env"]["loadModel"])) print('Loaded model from ' + opt["env"]["loadModel"]) criterion_hm = criterion_hm.cuda() criterion_paf = criterion_paf.cuda() # Create optimizer optimizer = create_optimizer(opt, model) # Other params to_train = opt["to_train"] visualize_out = opt["viz"]["vizOut"] # train/ test Processer = process(model) if to_train: Processer.train_net(train_loader, test_loader, criterion_hm, criterion_paf, optimizer, opt, viz_output=visualize_out) else: Processer.validate_net(test_loader, criterion_hm, criterion_paf, save_dir=opt["env"]["saveDir"], viz_output=visualize_out)