def main(): tokens = import_data(token_file) eids = import_data(eids_file) endpoints = [] zipcodes = [] locations = 'locations = [\n\n' i = 0 for eid in eids: i += 1 endpoint = get_endpoints(eid, tokens[0]) endpoints.append(endpoint) print endpoint response = get_response(endpoint) export_data(path, eid + '.json', response) for r in response['attendees']: if(r['profile']): profile = r['profile'] if(profile['addresses'] and profile['addresses']['bill'] and profile['addresses']['bill']['postal_code']): zipcode = str(profile['addresses']['bill']['postal_code']) # Remove duplicates if(zipcode not in zipcodes): zipcodes.append(zipcode) # Check if last element if(i == len(eids)): locations += zipcode else: locations += zipcode + ',\n' locations += '\n]' export_data(path, 'zipcodes.dat', zipcodes) export_data(path, 'locations.js', locations) export_data('../../public/js/project/', 'locations.js', locations)
# libraries import numpy as np from netCDF4 import Dataset, num2date # my functions from data_processing import import_data from averaging_stats import monthly_average from decorrelation_scale import decor_scale from lsf import least_square_fit from save_netcdf_fields import add_global_atrributes, save_netcdf_decor_scale # set time and space variables nt, nlon, nlat = 8400, 360, 133 # call data: swh, time, lat, lon = import_data("WW3_swh", data_path) # Use monthly average function to partition data and time into monthly segments swh_month_dict = monthly_average(np.array(time), swh) # Initialize monthly partitioned swh and time: swh_monthly_time = np.ma.array(swh_month_dict["time"]) swh_monthly_data = np.ma.array(swh_month_dict["data"]) # Compute decorrelation time scales # set variables: ntime = swh_monthly_data.shape[0] decor = np.zeros((ntime, nlat, nlon)) # Loop over time
# libraries import numpy as np from netCDF4 import Dataset, num2date # my functions from data_processing import import_data from averaging_stats import monthly_average from decorrelation_scale import decor_scale from lsf import least_square_fit from save_netcdf_fields import add_global_atrributes, save_netcdf_decor_scale # set time and space variables nt, nlon, nlat = 8400, 360, 133 # Call data: wsp, time, lat, lon = import_data("WW3_wsp", data_path) # Use monthly average function to partition data and time into monthly segments wsp_month_dict = monthly_average(np.array(time), wsp) # Initialize monthly partitioned swh and time: wsp_monthly_time = np.ma.array(wsp_month_dict["time"]) wsp_monthly_data = np.ma.array(wsp_month_dict["data"]) # Compute decorrelation time scales # set variables: ntime = wsp_monthly_data.shape[0] decor = np.zeros((ntime, nlat, nlon)) # Loop over time
import numpy as np from netCDF4 import Dataset, num2date import matplotlib.pyplot as plt import cartopy.crs as ccrs import cmocean.cm as cmo import matplotlib.patches as mpatches # my functions from data_processing import import_data from averaging_stats import clima_mean, stat_moments_temporal from lsf import weighted_least_square_fit, LSF_parameters from regional_clima_figs import regional_clima, regional_clima_plot import cartopy_figs as cart # call IFREMER SWH and CCMP2 WSP processed data: swh, time_s, lat_s, lon_s = import_data("IFREMER_swh", data_path_i) wsp, time_w, lat_w, lon_w = import_data("CCMP2_wsp", data_path_c) # Call decorrelation time scales ###### SWH ###### nc_swh = Dataset(data_path_decor + "IFREMER_swh_decor_time_scale.nc", "r") decor_swh = nc_swh.variables["decor_scale"][:] time_decor_swh = num2date(nc_swh.variables["time"][:], nc_swh.variables["time"].units) ###### WSP ###### nc_wsp = Dataset(data_path_decor + "CCMP2_wsp_decor_time_scale.nc", "r") decor_wsp = nc_wsp.variables["decor_scale"][:] time_decor_wsp = num2date(nc_wsp.variables["time"][:], nc_wsp.variables["time"].units) # Compute WSP statistical moments seasonally
# libraries import numpy as np from netCDF4 import Dataset, num2date # my functions from data_processing import import_data from averaging_stats import monthly_average from decorrelation_scale import decor_scale from lsf import least_square_fit from save_netcdf_fields import save_netcdf_decor_scale # set time and space variables nt, nlon, nlat = 8400, 360, 133 # Call data: wsp, time, lat, lon = import_data("CCMP2_wsp", data_path) # Use monthly average function to partition data and time into monthly segments wsp_month_dict = monthly_average(np.array(time), wsp) # Initialize monthly partitioned wsp and time: wsp_monthly_time = np.ma.array(wsp_month_dict["time"]) wsp_monthly_data = np.ma.array(wsp_month_dict["data"]) # Compute decorrelation time scales # set variables: ntime = wsp_monthly_data.shape[0] decor = np.zeros((ntime, nlat, nlon)) # Loop over time
# Import Libraries import numpy as np from netCDF4 import Dataset, num2date # Import functions from data_processing import import_data from averaging_stats import clima_mean from lsf import weighted_least_square_fit, LSF_parameters, uncertainty_phase_amp from save_netcdf_fields import save_netcdf_lsf_parameters # Set dimensions for data of space and time nt, nlon, nlat = 12, 360, 133 # Call data: wsp, time, lat, lon = import_data("WW3_wsp", data_path_ww) swh, time, lat, lon = import_data("WW3_swh", data_path_ws) # Calculate the monthly averaged from 1993 to 2015 #### SWH #### swh_clima_dict = clima_mean(date_time=np.ma.array(time), data=swh) swh_clima_mean = np.ma.array(swh_clima_dict["mean"]) swh_clima_std = np.ma.array(swh_clima_dict["std"]) swh_clima_n = np.ma.array(swh_clima_dict["N"]) #### WSP #### wsp_clima_dict = clima_mean(date_time=np.ma.array(time), data=wsp) wsp_clima_mean = np.ma.array(wsp_clima_dict["mean"]) wsp_clima_std = np.ma.array(wsp_clima_dict["std"]) wsp_clima_n = np.ma.array(wsp_clima_dict["N"]) # call monthly decorrelation scale
# libraries import numpy as np from netCDF4 import Dataset, num2date # my functions from data_processing import import_data from averaging_stats import monthly_average from lsf import least_square_fit from decorrelation_scale import decor_scale from save_netcdf_fields import add_global_atrributes, save_netcdf_decor_scale # set time and space variables nt, nlon, nlat = 8400, 360, 133 # call data: swh, time, lat, lon = import_data("IFREMER_swh", data_path) # Use monthly average function to partition data and time into monthly segments: swh_month_dict = monthly_average(np.array(time), swh) # Initialize monthly partitioned swh and time: swh_monthly_time = np.ma.array(swh_month_dict["time"]) swh_monthly_data = np.ma.array(swh_month_dict["data"]) # Compute decorrelation time scales # set variables ntime = swh_monthly_data.shape[0] decor = np.zeros((ntime, nlat, nlon)) # Loop over time for itime in range(0, ntime):
for i in reversed(range(r)): if indices[i] != n - 1: break else: return indices[i:] = [indices[i] + 1] * (r - i) yield tuple(pool[i] for i in indices) if __name__ == '__main__': # Read in data for i in range(0,1): file_train = "train" data0 = np.array(dp.import_data(file_train)) data0 = data0.astype(np.int) file_test = "test" test_data0 = np.array(dp.import_data(file_test)) test_data0 = test_data0.astype(np.int) out_best=csv.writer(open("results/best_results.csv","wb")) best_result = 0. best_val = [] ival = range(1,11) print(ival) c = [1,2,6,8,10] for n_est in range(23,24,1): maxd = n_est%50 + 1 #for c in combinations_with_replacement(ival,10):