コード例 #1
0
def 每日浮动收益统计(symbol:str, Type:str):
    from data_reader import get_index_day, get_stock_day, get_index_future_day, get_comm_future_day
    import pymssql

    start_date = str(date_list.iloc[1])[:10]
    end_date = str(date_list.iloc[-1])[:10]

    print("Fetching data from SQL database...")
    if Type=='stock':
        close = get_stock_day(symbol, start_date, end_date, freq = '1D')
    elif Type=='index':
        close = get_index_day(symbol, start_date, end_date, freq = '1D')
    elif Type=='index_future':
        close = get_index_future_day(symbol, start_date, end_date, freq = '1D')
    elif Type=='comm_future':
        close = get_comm_future_day(symbol, start_date, end_date, freq = '1D')
    elif Type=='coin':
        conn = pymssql.connect(server='192.168.0.28', port=1433, user='******', password='******', database='rawdata',charset = 'GBK')
        SQL = "select * from coin.dbo.coin_1min where "+"date between "+"\'"+start_date+"\' and \'" + end_date+"\'"
        temp_data = pd.read_sql(SQL, conn)
        close = temp_data.set_index('date')
        close = close.resample('1D').last()
    elif Type[:3] == 'AIP':
        if Type[-5:] == 'stock':
            close = get_stock_day(symbol, start_date, end_date, freq = '1D')
        elif Type[-5:] == 'index':
            close = get_index_day(symbol, start_date, end_date, freq = '1D')
        else:raise TypeError('Type "{}" is NOT acceptable, please check your input.'.format(Type))
    else:
        raise TypeError('Type "{}" is NOT acceptable, please check your input.'.format(Type))

    close.index = close.index + pd.Timedelta(24, unit='h')
    record = []
    截止当日的累计盈利, comfirmed_profit = 0, 0
    for day in close.index:
        float_profit = 0
        for deal in deal_list:
            if deal.is_valid(day):
                float_profit += deal.cal_floating(close.loc[day]['sclose'])
                deal.floating_profit=deal.cal_floating(close.loc[day]['sclose'])
            elif day.date()==deal.end.date():
                #如果是当天结束的,当天确认收益
                deal.confirm_profit()
                comfirmed_profit+=deal.profit
                #deal_list.remove(deal)
        截止当日的累计盈利 = comfirmed_profit + float_profit
        #print(day, int(float_profit), int(comfirmed_profit), int(截止当日的累计盈利),sep='\t')
        record.append((day, float_profit, comfirmed_profit, 截止当日的累计盈利))
    ans=pd.DataFrame(record,columns=('date','floating_profit','comfirmed_profit','accumulated_profit'))
    ans=ans.set_index('date')
    if Type.endswith('future'):
        choice = input("You are using futures;\nDo you want to multiply amount by 200?\nInput 1 for YES, 0 for NO: ")
        if choice=='0': future_multiplier = 1
        else: future_multiplier = 200
        ans[['floating_profit','comfirmed_profit','accumulated_profit']]*=future_multiplier
    ans['当日盈亏']=ans.accumulated_profit.diff()
    return ans
コード例 #2
0
 def 每日浮动收益统计(symbol='', Type='stock'):
     from data_reader import get_index_day, get_stock_day, get_index_future_day
     
     start_date = str(date_list[0])[:10]
     end_date = str(date_list[-1])[:10]
     # 如果未指定代码,则从ts原始文件中选取
     if symbol=='': symbol = pd.read_excel(f, sheet_name=-1,header=2).columns[1]
     if Type=='stock':
         close = get_stock_day(symbol, start_date, end_date, freq = '1D')
     elif Type=='index':
         close = get_index_day(symbol, start_date, end_date, freq = '1D')
     elif Type=='future':
         close = get_index_future_day(symbol, start_date, end_date, freq = '1D')
     close.index=close.index+pd.Timedelta(15,unit='h')
     record=[]
     截止当日的累计盈利=0
     comfirmed_profit=0
     for day in close.index:
         float_profit=0
         for deal in deal_list:
             if deal.is_valid(day):
                 float_profit += deal.cal_floating(close.loc[day]['close'])
                 deal.floating_profit=deal.cal_floating(close.loc[day]['close'])
             elif day.date()==deal.end.date():
                 #如果是当天结束的,当天确认收益
                 deal.confirm_profit()
                 comfirmed_profit+=deal.profit
                 #deal_list.remove(deal)
         截止当日的累计盈利 = comfirmed_profit + float_profit
         #print(day, int(float_profit), int(comfirmed_profit), int(截止当日的累计盈利),sep='\t')
         record.append((day, (float_profit), (comfirmed_profit), (截止当日的累计盈利)))
     ans=pd.DataFrame(record,columns=('date','floating_profit','comfirmed_profit','accumlated_profit'))
     ans=ans.set_index('date')
     ans['当日盈亏']=ans.accumlated_profit.diff()
     return ans
コード例 #3
0
def 每日浮动收益统计(symbol:str, Type:str):
    from data_reader import get_index_day, get_stock_day, get_index_future_day, get_comm_future_day
    
    start_date = str(date_list[0])[:10]
    end_date = str(date_list[-1])[:10]
    
    if Type=='stock':
        close = get_stock_day(symbol, start_date, end_date, freq = '1D')
    elif Type=='index':
        close = get_index_day(symbol, start_date, end_date, freq = '1D')
    elif Type=='index_future':
        close = get_index_future_day(symbol, start_date, end_date, freq = '1D')
    elif Type=='comm_future':
        close = get_comm_future_day(symbol, start_date, end_date, freq = '1D')
    else:
        print('Type is NOT acceptable, please check your input.')
        quit()

    close.index = close.index + pd.Timedelta(15, unit='h')
    record = []
    截止当日的累计盈利, comfirmed_profit = 0, 0
    for day in close.index:
        float_profit = 0
        for deal in deal_list:
            if deal.is_valid(day):
                float_profit += deal.cal_floating(close.loc[day]['sclose'])
                deal.floating_profit=deal.cal_floating(close.loc[day]['sclose'])
            elif day.date()==deal.end.date():
                #如果是当天结束的,当天确认收益
                deal.confirm_profit()
                comfirmed_profit+=deal.profit
                #deal_list.remove(deal)
        截止当日的累计盈利 = comfirmed_profit + float_profit
        #print(day, int(float_profit), int(comfirmed_profit), int(截止当日的累计盈利),sep='\t')
        record.append((day, float_profit, comfirmed_profit, 截止当日的累计盈利))
    ans=pd.DataFrame(record,columns=('date','floating_profit','comfirmed_profit','accumlated_profit'))
    ans=ans.set_index('date')
    if Type.endswith('future'):
        choice = input("You are using futures;\nDo you want to multiply amount by 200?\nInput 1 for YES, 0 for NO: ")
        if choice=='0': future_multiplier = 1
        else: future_multiplier = 200
        ans[['floating_profit','comfirmed_profit','accumlated_profit']]*=future_multiplier
    ans['当日盈亏']=ans.accumlated_profit.diff()
    return ans
コード例 #4
0
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sn
import sklearn as skl
import talib
from sklearn.linear_model import LinearRegression

import pymssql
from WindPy import w
from WindPy import *

N = 60
year_start = 2012
year_end = 2017
data = get_stock_day('600000.SH', '2010-01-01', '2017-12-31')

w.start()
rawdata = w.wsd("600000.SH", "dealnum", "2010-01-01", "2017-12-31", "")
rawdata = pd.DataFrame(rawdata.Data[0],
                       index=rawdata.Times,
                       columns=['dealnum'])
data = pd.concat([data, rawdata], axis=1)
data['D'] = data['amt'] / data['dealnum']
data = data['2012':]


# %% 选股
def collect_data():
    data = pd.DataFrame()
コード例 #5
0
def create_ta_data(stock):
    print("Processing", stock)
    if stock in stock_pool:
        SS = rd.get_stock_day(stock, "2010-01-01", "2019-01-01", "1D")
        SS = SS / SS.iloc[0]
        Return = holding_return[stock]
        target = holding_return.rank(axis=1)[stock]

        xlabel = label(target)
        target = pd.DataFrame(target)
        target["label"] = xlabel
        target = target[["label"]]

    elif stock == "benchmark":
        SS = benchmark
        SS.columns = ["sclose", "sopen", "high", "low", "vol"]

    MA = pd.DataFrame()
    # 计算10-90日均线
    for i in range(10, 50, 10):
        local_MA = ta.MA(SS.sclose, timeperiod=i)
        local_MA.name = stock + "_MA_" + str(i)
        MA = pd.concat([MA, local_MA], axis=1)
    MACD1, MACD2, XX = ta.MACD(SS.sclose)
    MACD = pd.concat([MACD1, MACD2], axis=1)
    MACD.columns = [stock + "_MACD1", stock + "_MACD2"]
    ADX = ta.ADX(SS.high, SS.low, SS.sclose) / 25
    ADXR = ta.ADXR(SS.high, SS.low, SS.sclose) / 25
    aroondown, aroonup = ta.AROON(SS.high, SS.low)
    aroondown = aroondown / 100
    aroonup = aroonup / 100
    ATR = ta.ATR(SS.high, SS.low, SS.sclose)
    Bupper, Bmiddle, Blower = ta.BBANDS(SS.sclose)
    group1 = pd.concat(
        [ADX, ADXR, aroondown, aroonup, ATR, Bupper, Bmiddle, Blower], axis=1
    )
    group1.columns = [
        stock + "_ADX",
        stock + "_ADXR",
        stock + "_aroondown",
        stock + "_aroonup",
        stock + "_ATR",
        stock + "_Bupper",
        stock + "_Bmiddle",
        stock + "_Blower",
    ]

    BOP = ta.BOP(SS.sopen, SS.high, SS.low, SS.sclose)
    CCI = ta.CCI(SS.high, SS.low, SS.sclose)
    CCI = CCI / 100
    CMO = ta.CMO(SS.sclose)
    CMO = CMO / 100
    DX = ta.DX(SS.high, SS.low, SS.sclose)
    EMA = ta.EMA(SS.sclose)
    KAMA = ta.KAMA(SS.sclose)
    MFI = ta.MFI(SS.high, SS.low, SS.sclose, SS.vol)
    MFI = MFI / 100
    MOM = ta.MOM(SS.sclose)
    RSI = ta.RSI(SS.sclose)
    RSI = (RSI - 50) / 100
    group2 = pd.concat([BOP, CCI, CMO, DX, EMA, KAMA, MFI, MOM, RSI], axis=1)
    group2.columns = [
        stock + "_BOP",
        stock + "_CCI",
        stock + "_CMO",
        stock + "_DX",
        stock + "_EMA",
        stock + "_KAMA",
        stock + "_MFI",
        stock + "_MOM",
        stock + "_RSI",
    ]
    SAR = ta.SAR(SS.high, SS.low)
    TRANGE = ta.TRANGE(SS.high, SS.low, SS.sclose)
    TRIMA = ta.TRIMA(SS.sclose)
    group3 = pd.concat([SAR, TRANGE, TRIMA], axis=1)
    group3.columns = [stock + "_SAR", stock + "_TRANGE", stock + "_TRIMA"]
    SS.columns = [
        stock + "_close",
        stock + "_open",
        stock + "_high",
        stock + "_low",
        stock + "_vol",
    ]
    raw_ta = pd.concat([SS, MA, MACD, group1, group2, group3], axis=1)
    if stock in stock_pool:
        raw_ta = pd.concat([raw_ta, target, Return], axis=1)

    return raw_ta
コード例 #6
0
def 每日浮动收益统计(symbol: str, Type: str):
    from data_reader import get_index_day, get_stock_day, get_index_future_day, get_comm_future_day
    import pymssql

    start_date = str(date_list.iloc[1] -
                     pd.Timedelta(30, 'd'))[:10]  # 早30天,为了使用RSI数据
    end_date = str(date_list.iloc[-1])[:10]
    print("[Time Range]", start_date, "~", end_date)

    print("Fetching data from SQL database...")
    if Type == 'stock':
        close = get_stock_day(symbol, start_date, end_date, freq='1D')
    elif Type == 'index':
        close = get_index_day(symbol, start_date, end_date, freq='1D')
    elif Type == 'index_future':
        close = get_index_future_day(symbol, start_date, end_date, freq='1D')
    elif Type == 'comm_future':
        close = get_comm_future_day(symbol, start_date, end_date, freq='1D')
    elif Type == 'coin':
        conn = pymssql.connect(server='192.168.0.28',
                               port=1433,
                               user='******',
                               password='******',
                               database='rawdata',
                               charset='GBK')
        SQL = "select * from coin.dbo.coin_1min where " + "date between " + "\'" + start_date + "\' and \'" + end_date + "\'"
        temp_data = pd.read_sql(SQL, conn)
        close = temp_data.set_index('date')
        close = close.resample('1D').last()
    elif Type == 'AIP':
        close = get_stock_day(symbol, start_date, end_date, freq='1D')
    else:
        print('Type is NOT acceptable, please check your input.')
        quit()
    close.index = close.index + pd.Timedelta(24, unit='h')
    print("SQL data loaded...")

    print("统计当日盈亏中...")
    t0 = time.time()
    record = []
    截止当日的累计盈利, comfirmed_profit = 0, 0
    for day in close.index[30:]:  #close数据提前了30天
        float_profit, 累计投入 = 0, 0
        for deal in deal_list:
            if (deal.start < day) and (deal.end > day):
                累计投入 += deal.investment
            if deal.is_valid(day):
                float_profit += deal.cal_floating(close.loc[day]['sclose'])
                deal.floating_profit = deal.cal_floating(
                    close.loc[day]['sclose'])
            elif day.date() == deal.end.date():
                #如果是当天结束的,当天确认收益
                deal.confirm_profit()
                comfirmed_profit += deal.profit
                #deal_list.remove(deal)
        截止当日的累计盈利 = comfirmed_profit + float_profit
        #print(day, int(float_profit), int(comfirmed_profit), int(截止当日的累计盈利),sep='\t')
        record.append((day, float_profit, comfirmed_profit, 截止当日的累计盈利, 累计投入))
    ans = pd.DataFrame(record,
                       columns=('date', 'floating_profit', 'comfirmed_profit',
                                'accumulated_profit',
                                'accumulated_investment'))
    ans = ans.set_index('date')
    if Type.endswith('future'):
        choice = input(
            "You are using futures;\nDo you want to multiply amount by 200?\nInput 1 for YES, 0 for NO: "
        )
        if choice == '0': future_multiplier = 1
        else: future_multiplier = 200
        ans[['floating_profit', 'comfirmed_profit',
             'accumulated_profit']] *= future_multiplier
    ans['当日盈亏'] = ans.accumulated_profit.diff()
    t1 = time.time()
    tpy = t1 - t0
    print('统计当日盈亏已完成,用时 %5.3f 秒' % tpy)
    return ans, close
コード例 #7
0
# worths, stock_close = {}, {}
# for index in STOCK_POOL:
#     print("----- Now processing {} ...".format(index))
#     s.read_files(FILEPATH + index + '.xlsx')
#     s.start()
#     s.AIP_net()
#     s.generate_profit_curve()
#     print("----- Processed successfully! -----", end='\n\n')
#     worths[index]=s.ans
#     stock_close[index]=s.stock_close.sclose
# start_date = worths[index].index[0]

#%% 获取收盘数据
price = {}
for symbol in STOCK_POOL:
    temp = get_stock_day(symbol, START_DATE, END_DATE, '1D')
    price[symbol] = temp.sclose
price = pd.DataFrame(price)
price.fillna(method='ffill', inplace=True)
price_diff = price.diff()
price_pct_chg = price.pct_change()

#%% 计算相对强弱指数RSI
RSI_Duration = 12
rsi = {}
for index in STOCK_POOL:
    rsi[index] = talib.RSI(price[index].shift(-1), RSI_Duration)
rsi = pd.DataFrame(rsi)

#%% 分配仓位
# 总共买3个标的