コード例 #1
0
ファイル: test_salmon.py プロジェクト: modulexcite/refinebio
def prepare_organism_indices():
    c_elegans = Organism.get_object_for_name("CAENORHABDITIS_ELEGANS")

    # This is a lie, but this image doesn't have the dependencies for TRANSCRIPTOME_INDEX
    computational_result_short = ComputationalResult(processor=utils.find_processor('SALMON_QUANT'))
    computational_result_short.save()

    organism_index = OrganismIndex()
    organism_index.index_type = "TRANSCRIPTOME_SHORT"
    organism_index.organism = c_elegans
    organism_index.result = computational_result_short
    organism_index.absolute_directory_path = "/home/user/data_store/salmon_tests/TRANSCRIPTOME_INDEX/SHORT"
    organism_index.save()

    comp_file = ComputedFile()
    # This path will not be used because we already have the files extracted.
    comp_file.absolute_file_path = "/home/user/data_store/salmon_tests/TRANSCRIPTOME_INDEX/SHORT/celgans_short.tar.gz"
    comp_file.result = computational_result_short
    comp_file.size_in_bytes=1337
    comp_file.sha1="ABC"
    comp_file.save()

    # This is a lie, but this image doesn't have the dependencies for TX_IMPORT
    computational_result_long = ComputationalResult(processor=utils.find_processor('SALMON_QUANT'))
    computational_result_long.save()
コード例 #2
0
def _populate_index_object(job_context: Dict) -> Dict:
    """ """

    result = ComputationalResult()
    result.commands.append(job_context["salmon_formatted_command"])
    try:
        processor_key = "TX_INDEX"
        result.processor = utils.find_processor(processor_key)
    except Exception as e:
        return utils.handle_processor_exception(job_context, processor_key, e)

    result.is_ccdl = True
    result.time_start = job_context["time_start"]
    result.time_end = job_context["time_end"]
    result.save()
    job_context['pipeline'].steps.append(result.id)

    computed_file = ComputedFile()
    computed_file.absolute_file_path = job_context["computed_archive"]
    computed_file.filename = os.path.split(job_context["computed_archive"])[-1]
    computed_file.calculate_sha1()
    computed_file.calculate_size()
    computed_file.result = result
    computed_file.is_smashable = False
    computed_file.is_qc = False
    computed_file.save()

    organism_object = Organism.get_object_for_name(job_context['organism_name'])
    index_object = OrganismIndex()
    index_object.organism = organism_object
    index_object.source_version = job_context["assembly_version"]
    index_object.assembly_name = job_context["assembly_name"]
    index_object.salmon_version = job_context["salmon_version"]
    index_object.index_type = "TRANSCRIPTOME_" + job_context['length'].upper()
    # This is where the index will be extracted to.
    index_object.absolute_directory_path = LOCAL_ROOT_DIR + "/TRANSCRIPTOME_INDEX/" \
                                           + organism_object.name + "/" + job_context['length']
    index_object.result = result

    if S3_TRANSCRIPTOME_INDEX_BUCKET_NAME:
        logger.info("Uploading %s %s to s3", job_context['organism_name'], job_context['length'], processor_job=job_context["job_id"])
        timestamp = str(timezone.now().timestamp()).split('.')[0]
        s3_key = organism_object.name + '_' + index_object.index_type + "_" + timestamp + '.tar.gz'
        sync_result = computed_file.sync_to_s3(S3_TRANSCRIPTOME_INDEX_BUCKET_NAME, s3_key)
        if sync_result:
            computed_file.delete_local_file()
    else:
        logger.warn("S3_TRANSCRIPTOME_INDEX_BUCKET_NAME not configured, therefore %s %s will not be uploaded.",
                    job_context['organism_name'],
                    job_context['length'],
                    processor_job=job_context["job_id"])

    index_object.save()

    # We uploaded the file ourselves since we wanted it to go to a
    # different bucket than end_job would put it in, therefore empty
    # this list so end_job doesn't try to upload it again.
    job_context['computed_files'] = []

    job_context['result'] = result
    job_context['computed_file'] = computed_file
    job_context['index'] = index_object

    # If there's not a long and a short index for this organism yet,
    # don't delete the input.
    # XXX: This will break once we introduce additional versions of these.
    short_indices = OrganismIndex.objects.filter(organism=organism_object,
                                                 index_type="TRANSCRIPTOME_SHORT",
                                                 source_version=job_context["assembly_version"])
    long_indices = OrganismIndex.objects.filter(organism=organism_object,
                                                 index_type="TRANSCRIPTOME_LONG",
                                                 source_version=job_context["assembly_version"])
    if short_indices.count() < 1 or long_indices.count() < 1:
        # utils.end_job deletes these, so remove them so it doesn't.
        job_context["original_files"] = []

    return job_context
コード例 #3
0
    def setUp(self):
        # Saving this for if we have protected endpoints
        # self.superuser = User.objects.create_superuser('john', '*****@*****.**', 'johnpassword')
        # self.client.login(username='******', password='******')
        # self.user = User.objects.create(username="******")

        experiment = Experiment()
        experiment.accession_code = "GSE000"
        experiment.alternate_accession_code = "E-GEOD-000"
        experiment.title = "NONONONO"
        experiment.description = "Boooooourns. Wasabi."
        experiment.technology = "RNA-SEQ"
        experiment.save()

        experiment = Experiment()
        experiment.accession_code = "GSE123"
        experiment.title = "Hey Ho Let's Go"
        experiment.description = (
            "This is a very exciting test experiment. Faygo soda. Blah blah blah."
        )
        experiment.technology = "MICROARRAY"
        experiment.save()
        self.experiment = experiment

        experiment_annotation = ExperimentAnnotation()
        experiment_annotation.data = {"hello": "world", "123": 456}
        experiment_annotation.experiment = experiment
        experiment_annotation.save()

        # Create 26 test organisms numbered 0-25 for pagination test, so there should be 29 organisms total (with the 3 others below)
        for i in range(26):
            Organism(name=("TEST_ORGANISM_{}".format(i)),
                     taxonomy_id=(1234 + i)).save()

        ailuropoda = Organism(name="AILUROPODA_MELANOLEUCA",
                              taxonomy_id=9646,
                              is_scientific_name=True)
        ailuropoda.save()
        self.homo_sapiens = Organism(name="HOMO_SAPIENS",
                                     taxonomy_id=9606,
                                     is_scientific_name=True)
        self.homo_sapiens.save()
        self.danio_rerio = Organism(name="DANIO_RERIO",
                                    taxonomy_id=1337,
                                    is_scientific_name=True)
        self.danio_rerio.save()

        sample = Sample()
        sample.title = "123"
        sample.accession_code = "123"
        sample.is_processed = True
        sample.organism = ailuropoda
        sample.save()

        sample = Sample()
        sample.title = "789"
        sample.accession_code = "789"
        sample.is_processed = True
        sample.organism = ailuropoda
        sample.save()
        self.sample = sample

        # add qn target for sample organism
        result = ComputationalResult()
        result.commands.append("create_qn_target.py")
        result.is_ccdl = True
        result.is_public = True
        result.processor = None
        result.save()

        cra = ComputationalResultAnnotation()
        cra.result = result
        cra.data = {"organism_id": ailuropoda.id, "is_qn": True}
        cra.save()

        ailuropoda.qn_target = result
        ailuropoda.save()

        sample_annotation = SampleAnnotation()
        sample_annotation.data = {"goodbye": "world", "789": 123}
        sample_annotation.sample = sample
        sample_annotation.save()

        original_file = OriginalFile()
        original_file.save()

        original_file_sample_association = OriginalFileSampleAssociation()
        original_file_sample_association.sample = sample
        original_file_sample_association.original_file = original_file
        original_file_sample_association.save()

        downloader_job = DownloaderJob()
        downloader_job.save()

        download_assoc = DownloaderJobOriginalFileAssociation()
        download_assoc.original_file = original_file
        download_assoc.downloader_job = downloader_job
        download_assoc.save()

        processor_job = ProcessorJob()
        processor_job.save()

        processor_assoc = ProcessorJobOriginalFileAssociation()
        processor_assoc.original_file = original_file
        processor_assoc.processor_job = processor_job
        processor_assoc.save()

        experiment_sample_association = ExperimentSampleAssociation()
        experiment_sample_association.sample = sample
        experiment_sample_association.experiment = experiment
        experiment_sample_association.save()
        experiment.num_total_samples = 1
        experiment.num_processed_samples = 1
        experiment.save()

        result = ComputationalResult()
        result.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        result = ComputationalResult()
        result.save()

        sra = SampleResultAssociation()
        sra.sample = sample
        sra.result = result
        sra.save()

        processor = Processor()
        processor.name = "Salmon Quant"
        processor.version = "v9.9.9"
        processor.docker_image = "dr_salmon"
        processor.environment = '{"some": "environment"}'
        processor.save()

        computational_result_short = ComputationalResult(processor=processor)
        computational_result_short.save()

        organism_index = OrganismIndex()
        organism_index.index_type = "TRANSCRIPTOME_SHORT"
        organism_index.organism = self.danio_rerio
        organism_index.result = computational_result_short
        organism_index.absolute_directory_path = (
            "/home/user/data_store/salmon_tests/TRANSCRIPTOME_INDEX/SHORT")
        organism_index.is_public = True
        organism_index.s3_url = "not_blank"
        organism_index.save()

        return
コード例 #4
0
def setup_experiment(new_version_accessions: List[str],
                     old_version_accessions: List[str]) -> Dict:
    """ Create an experiment where some samples were processed with the newest version of salmon and
    other with an older one.
    """
    # Create the experiment
    experiment_accession = "SRP095529"
    data_dir = "/home/user/data_store/"
    experiment_dir = data_dir + experiment_accession
    experiment = Experiment.objects.create(accession_code=experiment_accession,
                                           technology="RNA-SEQ")

    zebrafish = Organism.get_object_for_name("DANIO_RERIO")

    # Create the transcriptome processor and result:
    transcriptome_processor = Processor()
    transcriptome_processor.name = "Transcriptome"
    transcriptome_processor.version = "salmon 0.9.1"
    transcriptome_processor.docker_image = "dr_transcriptome"
    transcriptome_processor.environment = '{"some": "environment"}'
    transcriptome_processor.save()
    computational_result_short = ComputationalResult(
        processor=transcriptome_processor)
    computational_result_short.save()

    organism_index = OrganismIndex()
    organism_index.index_type = "TRANSCRIPTOME_SHORT"
    organism_index.organism = zebrafish
    organism_index.result = computational_result_short
    organism_index.absolute_directory_path = "/home/user/data_store/ZEBRAFISH_INDEX/SHORT"
    organism_index.salmon_version = "salmon 0.9.1"
    organism_index.save()

    comp_file = ComputedFile()
    # This path will not be used because we already have the files extracted.
    comp_file.absolute_file_path = (
        "/home/user/data_store/ZEBRAFISH_INDEX/SHORT/zebrafish_short.tar.gz")
    comp_file.result = computational_result_short
    comp_file.size_in_bytes = 1337
    comp_file.sha1 = "ABC"
    comp_file.s3_key = "key"
    comp_file.s3_bucket = "bucket"
    comp_file.save()

    quant_processor = Processor()
    quant_processor.name = "Salmon Quant"
    quant_processor.version = "salmon 0.9.1"
    quant_processor.docker_image = "dr_salmon"
    quant_processor.environment = '{"some": "environment"}'
    quant_processor.save()

    for accession_code in old_version_accessions:
        sample = Sample.objects.create(
            accession_code=accession_code,
            organism=zebrafish,
            source_database="SRA",
            technology="RNA-SEQ",
            platform_accession_code="IlluminaHiSeq1000",
        )
        ExperimentSampleAssociation.objects.create(experiment=experiment,
                                                   sample=sample)

        original_file = OriginalFile()
        original_file.filename = accession_code + ".SRA"
        original_file.source_filename = accession_code + ".SRA"
        original_file.save()

        OriginalFileSampleAssociation.objects.get_or_create(
            original_file=original_file, sample=sample)

        # Create and associate quant result and files.
        quant_result = ComputationalResult()
        quant_result.is_ccdl = True
        quant_result.processor = quant_processor
        quant_result.organism_index = organism_index  # associate with OLD organism index
        quant_result.save()

        kv = ComputationalResultAnnotation()
        kv.data = {"index_length": "short"}
        kv.result = quant_result
        kv.is_public = True
        kv.save()

        # In prod the filename pattern will involve the timestamp
        # but here we're using the accession code so we can find
        # the archive file for the current sample.
        archive_filename = "result-" + accession_code + ".tar.gz"
        archive_file = ComputedFile()
        archive_file.filename = archive_filename
        archive_file.absolute_file_path = os.path.join(experiment_dir,
                                                       archive_filename)
        archive_file.is_public = False
        archive_file.is_smashable = False
        archive_file.is_qc = False
        archive_file.result = quant_result
        archive_file.size_in_bytes = 12345
        archive_file.save()

        quant_file = ComputedFile()
        quant_file.filename = "quant.sf"
        quant_file.absolute_file_path = (experiment_dir + "/quant_files/" +
                                         accession_code + "_output/quant.sf")
        quant_file.is_public = False
        quant_file.is_smashable = False
        quant_file.is_qc = False
        quant_file.result = quant_result
        quant_file.size_in_bytes = 12345
        quant_file.s3_bucket = "bucket"
        quant_file.s3_key = "key"
        quant_file.save()

        SampleResultAssociation.objects.get_or_create(sample=sample,
                                                      result=quant_result)

    # Create another OrganismIndex with a newer version of
    transcriptome_processor = Processor()
    transcriptome_processor.name = "Transcriptome"
    transcriptome_processor.version = "salmon 0.13.1"
    transcriptome_processor.docker_image = "dr_transcriptome"
    transcriptome_processor.environment = '{"some": "environment"}'
    transcriptome_processor.save()
    computational_result_short = ComputationalResult(
        processor=transcriptome_processor)
    computational_result_short.save()

    organism_index = OrganismIndex()
    organism_index.index_type = "TRANSCRIPTOME_SHORT"
    organism_index.organism = zebrafish
    organism_index.result = computational_result_short
    organism_index.absolute_directory_path = "/home/user/data_store/ZEBRAFISH_INDEX/SHORT"
    organism_index.salmon_version = "salmon 0.13.1"  # DIFFERENT SALMON VERSION
    organism_index.save()

    comp_file = ComputedFile()
    # This path will not be used because we already have the files extracted.
    comp_file.absolute_file_path = (
        "/home/user/data_store/ZEBRAFISH_INDEX/SHORT/zebrafish_short.tar.gz")
    comp_file.result = computational_result_short
    comp_file.size_in_bytes = 1337
    comp_file.sha1 = "ABC"
    comp_file.s3_key = "key"
    comp_file.s3_bucket = "bucket"
    comp_file.save()

    for accession_code in new_version_accessions:
        sample = Sample.objects.create(
            accession_code=accession_code,
            organism=zebrafish,
            source_database="SRA",
            technology="RNA-SEQ",
            platform_accession_code="IlluminaHiSeq1000",
        )
        ExperimentSampleAssociation.objects.create(experiment=experiment,
                                                   sample=sample)

        original_file = OriginalFile()
        original_file.filename = accession_code + ".SRA"
        original_file.source_filename = accession_code + ".SRA"
        original_file.save()

        OriginalFileSampleAssociation.objects.get_or_create(
            original_file=original_file, sample=sample)

        # Create and associate quant result and files.
        quant_result = ComputationalResult()
        quant_result.is_ccdl = True
        quant_result.processor = quant_processor
        quant_result.organism_index = organism_index  # NEWER VERSION
        quant_result.save()

        kv = ComputationalResultAnnotation()
        kv.data = {"index_length": "short"}
        kv.result = quant_result
        kv.is_public = True
        kv.save()

        # In prod the filename pattern will involve the timestamp
        # but here we're using the accession code so we can find
        # the archive file for the current sample.
        archive_filename = "result-" + accession_code + ".tar.gz"
        archive_file = ComputedFile()
        archive_file.filename = archive_filename
        archive_file.absolute_file_path = os.path.join(experiment_dir,
                                                       archive_filename)
        archive_file.is_public = False
        archive_file.is_smashable = False
        archive_file.is_qc = False
        archive_file.result = quant_result
        archive_file.size_in_bytes = 12345
        archive_file.save()

        quant_file = ComputedFile()
        quant_file.filename = "quant.sf"
        quant_file.absolute_file_path = (experiment_dir + "/quant_files/" +
                                         accession_code + "_output/quant.sf")
        quant_file.is_public = False
        quant_file.is_smashable = False
        quant_file.is_qc = False
        quant_file.result = quant_result
        quant_file.size_in_bytes = 12345
        quant_file.s3_bucket = "bucket"
        quant_file.s3_key = "key"
        quant_file.save()

        SampleResultAssociation.objects.get_or_create(sample=sample,
                                                      result=quant_result)

    return experiment
コード例 #5
0
def prep_tximport_at_progress_point(complete_accessions: List[str],
                                    incomplete_accessions: List[str]) -> Dict:
    """Create an experiment and associated objects that tximport needs to run on it.

    Creates a sample for each accession contained in either input
    list. The samples in complete_accessions will be simlulated as
    already having salmon quant run on them. The samples in
    incomplete_accessions won't.
    """
    # Create the experiment
    experiment_accession = "SRP095529"
    data_dir = "/home/user/data_store/"
    experiment_dir = data_dir + experiment_accession
    experiment = Experiment.objects.create(accession_code=experiment_accession,
                                           technology="RNA-SEQ")

    zebrafish = Organism.get_object_for_name("DANIO_RERIO")

    ExperimentOrganismAssociation.objects.get_or_create(experiment=experiment,
                                                        organism=zebrafish)

    # Create the transcriptome processor and result:
    transcriptome_processor = Processor()
    transcriptome_processor.name = "Transcriptome"
    transcriptome_processor.version = "salmon 0.13.1"
    transcriptome_processor.docker_image = "dr_transcriptome"
    transcriptome_processor.environment = '{"some": "environment"}'
    transcriptome_processor.save()
    computational_result_short = ComputationalResult(
        processor=transcriptome_processor)
    computational_result_short.save()

    organism_index = OrganismIndex()
    organism_index.index_type = "TRANSCRIPTOME_SHORT"
    organism_index.organism = zebrafish
    organism_index.result = computational_result_short
    organism_index.absolute_directory_path = "/home/user/data_store/ZEBRAFISH_INDEX/SHORT"
    organism_index.salmon_version = "salmon 0.13.1"
    organism_index.save()

    comp_file = ComputedFile()
    # This path will not be used because we already have the files extracted.
    comp_file.absolute_file_path = (
        "/home/user/data_store/ZEBRAFISH_INDEX/SHORT/zebrafish_short.tar.gz")
    comp_file.result = computational_result_short
    comp_file.size_in_bytes = 1337
    comp_file.sha1 = "ABC"
    comp_file.s3_key = "key"
    comp_file.s3_bucket = "bucket"
    comp_file.save()

    for accession_code in incomplete_accessions:
        sample = Sample.objects.create(
            accession_code=accession_code,
            organism=zebrafish,
            source_database="SRA",
            technology="RNA-SEQ",
        )
        ExperimentSampleAssociation.objects.create(experiment=experiment,
                                                   sample=sample)

        original_file = OriginalFile()
        original_file.filename = accession_code + ".SRA"
        original_file.source_filename = accession_code + ".SRA"
        original_file.save()

        OriginalFileSampleAssociation.objects.get_or_create(
            original_file=original_file, sample=sample)

    quant_processor = Processor()
    quant_processor.name = "Salmon Quant"
    quant_processor.version = "salmon 0.13.1"
    quant_processor.docker_image = "dr_salmon"
    quant_processor.environment = '{"some": "environment"}'
    quant_processor.save()
    tximport_processor = Processor()
    tximport_processor.name = "Tximport"
    tximport_processor.version = "salmon 0.13.1"
    tximport_processor.docker_image = "dr_salmon"
    tximport_processor.environment = '{"some": "environment"}'
    tximport_processor.save()

    # Create the already processed samples along with their
    # ComputationalResults and ComputedFiles. They don't need
    # original files for this test because we aren't going to run
    # salmon quant on them.
    for accession_code in complete_accessions:
        sample = Sample.objects.create(
            accession_code=accession_code,
            organism=zebrafish,
            source_database="SRA",
            technology="RNA-SEQ",
        )
        ExperimentSampleAssociation.objects.create(experiment=experiment,
                                                   sample=sample)

        original_file = OriginalFile()
        original_file.filename = accession_code + ".SRA"
        original_file.source_filename = accession_code + ".SRA"
        original_file.save()

        OriginalFileSampleAssociation.objects.get_or_create(
            original_file=original_file, sample=sample)

        # Create and associate quant result and files.
        quant_result = ComputationalResult()
        quant_result.is_ccdl = True
        quant_result.processor = quant_processor
        quant_result.organism_index = organism_index
        quant_result.save()

        kv = ComputationalResultAnnotation()
        kv.data = {"index_length": "short"}
        kv.result = quant_result
        kv.is_public = True
        kv.save()

        # In prod the filename pattern will involve the timestamp
        # but here we're using the accession code so we can find
        # the archive file for the current sample.
        archive_filename = "result-" + accession_code + ".tar.gz"
        archive_file = ComputedFile()
        archive_file.filename = archive_filename
        archive_file.absolute_file_path = os.path.join(experiment_dir,
                                                       archive_filename)
        archive_file.is_public = False
        archive_file.is_smashable = False
        archive_file.is_qc = False
        archive_file.result = quant_result
        archive_file.size_in_bytes = 12345
        archive_file.save()

        quant_file = ComputedFile()
        quant_file.filename = "quant.sf"
        quant_file.absolute_file_path = (experiment_dir + "/quant_files/" +
                                         accession_code + "_output/quant.sf")
        quant_file.is_public = False
        quant_file.is_smashable = False
        quant_file.is_qc = False
        quant_file.result = quant_result
        quant_file.size_in_bytes = 12345
        quant_file.s3_bucket = "bucket"
        quant_file.s3_key = "key"
        quant_file.save()

        sample.most_recent_quant_file = quant_file
        sample.save()
        SampleResultAssociation.objects.get_or_create(sample=sample,
                                                      result=quant_result)
コード例 #6
0
ファイル: test_salmon.py プロジェクト: modulexcite/refinebio
def run_tximport_at_progress_point(complete_accessions: List[str], incomplete_accessions: List[str]) -> Dict:
    """Create an experiment and associated objects and run tximport on it.

    Creates a sample for each accession contained in either input
    list. The samples in complete_accessions will be simlulated as
    already having salmon quant run on them. The samples in
    incomplete_accessions won't.
    """
    # Create the experiment
    experiment_accession = 'SRP095529'
    data_dir = '/home/user/data_store/salmon_tests/'
    experiment_dir = data_dir + experiment_accession
    experiment = Experiment.objects.create(accession_code=experiment_accession)

    zebrafish = Organism.get_object_for_name("DANIO_RERIO")

    # This is a lie, but this image doesn't have the dependencies for TRANSCRIPTOME_INDEX
    computational_result_short = ComputationalResult(processor=utils.find_processor('SALMON_QUANT'))
    computational_result_short.save()

    organism_index = OrganismIndex()
    organism_index.index_type = "TRANSCRIPTOME_SHORT"
    organism_index.organism = zebrafish
    organism_index.result = computational_result_short
    organism_index.absolute_directory_path = "/home/user/data_store/salmon_tests/ZEBRAFISH_INDEX/SHORT"
    organism_index.save()

    comp_file = ComputedFile()
    # This path will not be used because we already have the files extracted.
    comp_file.absolute_file_path = "/home/user/data_store/salmon_tests/ZEBRAFISH_INDEX/SHORT/zebrafish_short.tar.gz"
    comp_file.result = computational_result_short
    comp_file.size_in_bytes=1337
    comp_file.sha1="ABC"
    comp_file.s3_key = "key"
    comp_file.s3_bucket = "bucket"
    comp_file.save()

    for accession_code in incomplete_accessions:
        last_sample = Sample.objects.create(
            accession_code=accession_code,
            organism=zebrafish,
            source_database='SRA',
            technology='RNA-SEQ'
        )
        ExperimentSampleAssociation.objects.create(experiment=experiment, sample=last_sample)

    # Create tximport result and files
    quant_processor = utils.find_processor("SALMON_QUANT")
    tximport_processor = utils.find_processor("TXIMPORT")

    # Create the already processed samples along with their
    # ComputationalResults and ComputedFiles. They don't need
    # original files for this test because we aren't going to run
    # salmon quant on them.
    for accession_code in complete_accessions:
        sample = Sample.objects.create(
            accession_code=accession_code,
            organism=zebrafish,
            source_database='SRA',
            technology='RNA-SEQ'
        )
        ExperimentSampleAssociation.objects.create(experiment=experiment, sample=sample)

        if accession_code == "SRR5125622":
            current_sample = sample

        # Create and associate quant result and files.
        quant_result = ComputationalResult()
        quant_result.is_ccdl = True
        quant_result.processor = quant_processor
        quant_result.save()

        # In prod the filename pattern will involve the timestamp
        # but here we're using the accession code so we can find
        # the archive file for the current sample.
        archive_filename = "result-" + accession_code + ".tar.gz"
        archive_file = ComputedFile()
        archive_file.filename = archive_filename
        archive_file.absolute_file_path = os.path.join(experiment_dir, archive_filename)
        archive_file.is_public = False
        archive_file.is_smashable = False
        archive_file.is_qc = False
        archive_file.result = quant_result
        archive_file.size_in_bytes = 12345
        archive_file.save()

        quant_file = ComputedFile()
        quant_file.filename = "quant.sf"
        quant_file.absolute_file_path = experiment_dir + "/quant_files/" + accession_code + "_output/quant.sf"
        quant_file.is_public = False
        quant_file.is_smashable = False
        quant_file.is_qc = False
        quant_file.result = quant_result
        quant_file.size_in_bytes = 12345
        quant_file.s3_bucket = "bucket"
        quant_file.s3_key = "key"
        quant_file.save()

        SampleResultAssociation.objects.get_or_create(
            sample=sample,
            result=quant_result
        )

    # Processor jobs need at least one original file associated with
    # them so they know what they're processing.
    current_og = OriginalFile()
    current_og.absolute_file_path = os.path.join(experiment_dir, 'SRR5125622.fastq.gz')
    current_og.filename = "SRR5125622.fastq.gz"
    current_og.save()

    OriginalFileSampleAssociation.objects.create(original_file=current_og, sample=current_sample).save()

    pj = ProcessorJob()
    pj.pipeline_applied = "TXIMPORT"
    pj.save()

    assoc1 = ProcessorJobOriginalFileAssociation()
    assoc1.original_file = current_og
    assoc1.processor_job = pj
    assoc1.save()

    # Prep our job context
    job_context = tximport._prepare_files({"job_dir_prefix": "TEST3",
                                           "job_id": "TEST3",
                                           "job": pj,
                                           "index_directory": organism_index.absolute_directory_path,
                                           "pipeline": Pipeline(name="Salmon"),
                                           "computed_files": [],
                                           "original_files": [current_og]})

    # We don't have the raw file to run _determine_index_length so
    # just pick one, it doesn't matter that much because we aren't
    # checking the output data.
    job_context["index_length"] = "short"
    job_context = salmon._find_or_download_index(job_context)

    job_context = salmon.get_tximport_inputs(job_context)
    job_context = salmon.tximport(job_context)

    return job_context