コード例 #1
0
def autism_sets_process():
    print(
        "---------------------Autism Adult Data Sets(CART)------------------------"
    )
    autism_data_sets, autism_labels = utils.get_autism_data_set()
    autism_data_test_df, autism_data_train_df = utils.handle_data(
        autism_data_sets, autism_labels)
    autism_labels = array(autism_data_train_df.columns)
    # print(autism_labels)
    target_names = unique(autism_data_train_df.iloc[:, -1])
    # print(target_names)
    dt = DecisionTree()
    fit_begin_time = datetime.datetime.now()
    print("Begin Time: " + str(fit_begin_time))
    tree = dt.fit(autism_data_train_df)
    # print(tree)
    # print(autism_data_test_df)
    fit_end_time = datetime.datetime.now()
    print("End Time: " + str(fit_end_time))
    print("Training used Time: " + str(fit_end_time - fit_begin_time))
    autism_test_result_df = predict_data(dt, autism_data_test_df,
                                         autism_labels)
    report = utils.generate_report(autism_data_test_df, autism_test_result_df,
                                   target_names)
    print(report)
コード例 #2
0
def healthy_sets_process():
    print("---------------------Healthy Older People Sets(ID3)------------------------")
    healthy_data_sets, healthy_labels = utils.get_healthy_data_set()
    healthy_data_test_df, healthy_data_train_df = utils.handle_data(healthy_data_sets, healthy_labels)
    target_names = unique(healthy_data_train_df.iloc[:, -1])
    # print(target_names)
    dt = DecisionTree()
    fit_begin_time = datetime.datetime.now()
    print("Begin Time: " + str(fit_begin_time))
    tree = dt.fit(healthy_data_train_df)
    fit_end_time = datetime.datetime.now()
    print("End Time: " + str(fit_end_time))
    print("Training used Time: " + str(fit_end_time - fit_begin_time))
    healthy_test_result_df = predict_data(dt, healthy_data_test_df, healthy_labels)
    report = utils.generate_report(healthy_data_test_df, healthy_test_result_df, target_names)
    print(report)
コード例 #3
0
def iris_sets_process():
    print("---------------------Iris Data Sets(ID3)------------------------")
    iris_data_sets, iris_labels = utils.get_iris_data_set()
    iris_data_test_df, iris_data_train_df = utils.handle_data(iris_data_sets, iris_labels)
    target_names = unique(iris_data_train_df.iloc[:, -1])
    # print(target_names)
    dt = DecisionTree()
    fit_begin_time = datetime.datetime.now()
    print("Begin Time: " + str(fit_begin_time))
    tree = dt.fit(iris_data_train_df)
    fit_end_time = datetime.datetime.now()
    print("End Time: " + str(fit_end_time))
    print("Training used Time: " + str(fit_end_time - fit_begin_time))
    # print(tree)
    # print(iris_data_test_df)
    # r1 = dt.predict(["7.0", "3.2", "4.7", "1.4"])
    # print(r1)
    iris_test_result_df = predict_data(dt, iris_data_test_df, iris_labels)
    # print(iris_test_result_df)
    report = utils.generate_report(iris_data_test_df, iris_test_result_df, target_names)
    print(report)