コード例 #1
0
def main():
    # directory for training outputs
    output_dir = "results/{:%Y%m%d_%H%M%S}/".format(datetime.now())

    # required parameters
    parser = argparse.ArgumentParser()

    parser.add_argument("--model_type",
                        default=None,
                        type=str,
                        required=True,
                        help="Model type selected in the list: " +
                        ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path",
                        default=None,
                        type=str,
                        required=True,
                        help="Path to pre-trained model or shortcut name: " +
                        ", ".join(ALL_MODELS))
    parser.add_argument("--checkpoint",
                        default='',
                        type=str,
                        required=True,
                        help="where to load pre-trained model.")
    parser.add_argument(
        "--max_seq_length",
        default=512,
        type=int,
        required=True,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument("--use_pretrained",
                        action='store_true',
                        default=True,
                        help="If use pre-trained model weights.")

    # other parameters
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        "--config_name",
        default="",
        type=str,
        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--num_epochs",
                        default=30,
                        type=int,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--task_name",
        default='lpc',
        type=str,
        help="The name of the task to train selected in the list: " +
        ", ".join(processors.keys()))
    parser.add_argument("--weight_decay",
                        default=0.0,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--learning_rate",
                        default=2e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--warmup_steps",
                        default=3,
                        type=int,
                        help="Linear warmup over warmup_steps.")
    parser.add_argument("--per_gpu_eval_batch_size",
                        default=4,
                        type=int,
                        help="Batch size for evaluation.")
    parser.add_argument("--no_cuda",
                        default=False,
                        type=bool,
                        help="Do not use cuda.")
    parser.add_argument("--do_lower_case",
                        default=True,
                        type=bool,
                        help="Do lower case.")
    parser.add_argument("--seed", default=610, type=int, help="Random seed.")
    parser.add_argument("--num_labels",
                        default=3,
                        type=int,
                        help="Classification label number.")
    parser.add_argument("--scheduler",
                        default='warmup',
                        type=str,
                        help="Which type of scheduler to use.")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument(
        '--overwrite_cache',
        action='store_true',
        default=False,
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--write_summary',
                        default=True,
                        type=bool,
                        help="If write summary into tensorboard.")
    parser.add_argument(
        '--fp16',
        action='store_true',
        default=False,
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"
    )
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O1',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")

    # data directory
    parser.add_argument("--data_dir",
                        default='../data/TF-IDF',
                        type=str,
                        help="data directory where pickle dataset is stored.")
    parser.add_argument(
        "--output_dir",
        default=output_dir,
        type=str,
        help="output directory for model, log file and summary.")
    parser.add_argument("--log_path",
                        default=join(output_dir, "log.txt"),
                        type=str,
                        help="Path to log.txt.")
    parser.add_argument("--summary_path",
                        default=join(output_dir, "summary"),
                        type=str,
                        help="Path to summary file.")

    args = parser.parse_args()

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    if not os.path.exists(args.data_dir):
        os.makedirs(args.data_dir)

    args.logger = get_logger(args.log_path)

    # Setup CUDA, GPU & distributed training
    args.device = torch.device(
        "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
    args.n_gpu = torch.cuda.device_count()
    args.logger.info("- device: {}, n_gpu: {}".format(args.device, args.n_gpu))
    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)

    # set seed
    set_seed(args.seed)

    # build model
    args.logger.info("Build model...")
    model = Model(args)

    # make data
    make_data(ARTICLES_FILEPATH,
              METADATA_FILEPATH,
              args.data_dir,
              file_name='dev')

    # build dataset
    args.logger.info("Loading dataset...")
    eval_dataset, guids = load_and_cache_examples(args,
                                                  args.task_name,
                                                  model.tokenizer,
                                                  evaluate=True)
    eval_sampler = SequentialSampler(eval_dataset)
    eval_dataloader = DataLoader(eval_dataset,
                                 sampler=eval_sampler,
                                 batch_size=args.eval_batch_size)

    # training
    args.logger.info("Start testing:")
    preds = model.test(eval_dataloader)
    assert len(preds) == len(
        guids), "Prediction list and GUID list length do NOT equal!!!"

    # write results
    args.logger.info("Write prediction results:")
    write_results(OUTPUT_DIR, guids, preds)
    args.logger.info("Save results at: {}".format(
        os.path.join(OUTPUT_DIR, 'predictions.txt')))
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default="/scratch/yyv959/commonsenseqa/",
        type=str,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--fake_data_dir",
        default="/scratch/yyv959/commonsenseqa/",
        type=str,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--model_type",
                        default='roberta',
                        type=str,
                        help="Model type selected in the list: " +
                        ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument(
        "--model_name_or_path",
        default="roberta-large",
        type=str,
        help="Path to pre-trained model or shortcut name selected in the list: "
    )
    parser.add_argument(
        "--output_dir",
        default="",
        type=str,
        help="Path to pre-trained model or shortcut name selected in the list: "
    )
    parser.add_argument(
        "--task_name",
        default="commonsenseqa",
        type=str,
        help="The name of the task to train selected in the list: " +
        ", ".join(processors.keys()))

    ## Other parameters
    parser.add_argument(
        "--config_name",
        default="",
        type=str,
        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=70,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.")

    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument(
        "--mask_question",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=10,
                        type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--gradient_accumulation_steps",
                        default=10,
                        type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--eval_batch_size",
                        default=16,
                        type=int,
                        help="Batch size per GPU/CPU for evaluation.")

    parser.add_argument("--weight_decay",
                        default=0.01,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--damping",
                        default=0.01,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--c",
                        default=1e7,
                        type=float,
                        help="Weight deay if we apply some.")

    parser.add_argument("--r",
                        default=10,
                        type=int,
                        help="Total number of training epochs to perform.")

    parser.add_argument("--t",
                        default=8000,
                        type=int,
                        help="Total number of training epochs to perform.")

    parser.add_argument('--logging_steps',
                        type=int,
                        default=609,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps',
                        type=int,
                        default=100000,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action='store_true',
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number"
    )
    parser.add_argument(
        "--no_hessian",
        action='store_true',
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number"
    )
    parser.add_argument(
        "--load_hvp",
        action='store_true',
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number"
    )
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir',
                        action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument(
        '--overwrite_cache',
        action='store_true',
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")

    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="For distributed training: local_rank")
    args = parser.parse_args()

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    args.device = torch.device("cuda")

    # Set seed
    set_seed(args)

    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    label_list = processor.get_labels()
    num_labels = len(label_list)

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name)
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name
        if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case)
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool('.ckpt' in args.model_name_or_path),
        config=config)

    model.to(args.device)
    #if args.fp16:
    #    model.half()
    train_dataset = load_and_cache_examples(args,
                                            args.task_name,
                                            tokenizer,
                                            evaluate=False,
                                            test=False)
    eval_dataset = load_and_cache_examples(args,
                                           args.task_name,
                                           tokenizer,
                                           evaluate=True,
                                           test=False)
    fake_dataset = load_and_cache_examples(args,
                                           args.task_name,
                                           tokenizer,
                                           evaluate=False,
                                           test=False,
                                           fake=True)

    #eval_dataset = eval_dataset[:200,:]
    #print(eval_dataset
    #)
    if not args.load_hvp:
        grad = get_validation_grad(args, eval_dataset, model)
        if args.no_hessian:
            HVP = grad
        else:
            HVP = get_HVP(args, train_dataset, model, grad, args)
        torch.save(
            HVP, args.output_dir + "HVP_" + str(args.train_batch_size) + "b_" +
            str(args.t) + "t_" + str(args.r) + "r")
    else:
        HVP = torch.load(args.output_dir + "HVP_" +
                         str(args.train_batch_size) + "b_" + str(args.t) +
                         "t_" + str(args.r) + "r")
    influences = get_influence(args, fake_dataset, model, HVP, args)
    if args.no_hessian:
        np.save(
            os.path.join(args.output_dir,
                         "train_data_influences_no_hessian" + ".npy"),
            influences)
    else:
        np.save(
            os.path.join(
                args.output_dir,
                "fake_data_300000_influences" + str(args.train_batch_size) +
                "b_" + str(args.t) + "t_" + str(args.r) + "r" + ".npy"),
            influences)
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default="/scratch/yyv959/commonsenseqa/",
        type=str,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--model_type",
                        default='gpt2',
                        type=str,
                        help="Model type selected in the list: " +
                        ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument(
        "--model_name_or_path",
        default="gpt2",
        type=str,
        help="Path to pre-trained model or shortcut name selected in the list: "
        + ", ".join(ALL_MODELS))
    parser.add_argument(
        "--task_name",
        default="commonsenseqa",
        type=str,
        help="The name of the task to train selected in the list: " +
        ", ".join(processors.keys()))
    parser.add_argument(
        "--output_dir",
        default="/scratch/yyv959/commonsenseqa/outputs/gpt2/qg/",
        type=str,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--config_name",
        default="",
        type=str,
        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--input_max_seq_length",
        default=62,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument(
        "--output_max_seq_length",
        default=10,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_test",
                        action='store_true',
                        help='Whether to run test on the test set')
    parser.add_argument(
        "--evaluate_during_training",
        action='store_true',
        help="Rul evaluation during training at each logging step.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--per_gpu_train_batch_size",
                        default=2,
                        type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size",
                        default=32,
                        type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=8,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay",
                        default=0.01,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-6,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=1.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help=
        "If > 0: set total number of training steps to perform. Override num_train_epochs."
    )
    parser.add_argument("--warmup_ratio",
                        default=0.0,
                        type=float,
                        help="Linear warmup over warmup_steps.")
    parser.add_argument("--linear_decay",
                        action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--logging_steps',
                        type=int,
                        default=609,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps',
                        type=int,
                        default=5000,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action='store_true',
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number"
    )
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir',
                        action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument(
        '--overwrite_cache',
        action='store_true',
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument(
        '--multi_task',
        action='store_true',
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument(
        '--mc',
        action='store_true',
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")

    parser.add_argument(
        '--fp16',
        action='store_true',
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"
    )
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O1',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="For distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="For distant debugging.")
    args = parser.parse_args()

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
            .format(args.output_dir))

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device

    # Setup logging
    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank, device, args.n_gpu, bool(args.local_rank != -1),
        args.fp16)

    # Set seed
    set_seed(args)

    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name)
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name
        if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case)
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool('.ckpt' in args.model_name_or_path),
        config=config)

    if args.local_rank == 0:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    tokenizer.add_special_tokens({'pad_token': "[PAD]"})

    #tokenizer.add_special_tokens({'cls_token': "[CLS]"})
    #tokenizer.add_special_tokens({'sep_token': "[SEP]"})
    #print(model.transformer.generator.weight.size())
    #print(model.transformer.wte.weight[0,:10])
    model.transformer._resize_token_embeddings(len(tokenizer))
    #print(model.transformer.wte.weight[0,:10])
    #print(model.transformer.generator.weight.size())
    model.transformer.tie_weights()
    #print(model.transformer.generator.weight[0,:10])
    #print(model.transformer.generator.weight.size())
    model.transformer.config.vocab_size += 1
    #print(model.transformer.wte.weight.size())
    #print(model.generator.weight.size())
    #quit()
    #model.config.vocab_size += 3
    model.add_tokenizer(tokenizer)
    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)
    best_steps = 0

    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                args.task_name,
                                                tokenizer,
                                                evaluate=False)
        global_step, tr_loss, best_steps = train(args, train_dataset, model,
                                                 tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step,
                    tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(
            model,
            'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
        tokenizer = tokenizer_class.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
        model.add_tokenizer(tokenizer)
        model.to(args.device)

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        #if not args.do_train:
        #    args.output_dir = args.model_name_or_path
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            logging.getLogger("transformers.modeling_utils").setLevel(
                logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split(
                '-')[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.add_tokenizer(tokenizer)
            model.to(args.device)
            result = evaluate(args,
                              model,
                              tokenizer,
                              prefix=global_step,
                              generation=True)
            result = dict(
                (k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

    if args.do_test and args.local_rank in [-1, 0]:
        if not args.do_train:
            args.output_dir = args.model_name_or_path
        checkpoints = [args.output_dir]
        # if args.eval_all_checkpoints: # can not use this to do test!!
        #     checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
        #     logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split(
                '-')[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args,
                              model,
                              tokenizer,
                              prefix=global_step,
                              test=True)
            result = dict(
                (k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)
    if best_steps:
        logger.info("best steps of eval acc is the following checkpoints: %s",
                    best_steps)
    return results
コード例 #4
0
def main():
    parser = argparse.ArgumentParser()

    # Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " +
        ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " +
        ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " +
        ", ".join(processors.keys()),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )

    # Other parameters
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name",
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument("--do_train", action="store_true",
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true",
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_pred", action="store_true",
                        help="Whether to do prediction on test set")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step.",
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.",
    )

    parser.add_argument(
        "--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.",
    )
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=1e-5,
                        type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0,
                        type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8,
                        type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0,
                        type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.",
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
    parser.add_argument("--warmup_ratio", default=0.1,
                        type=float, help="Linear warmup ratio.")
    parser.add_argument("--logging_steps", type=int,
                        default=500, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=500,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true",
                        help="Avoid using CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory",
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets",
    )
    parser.add_argument("--seed", type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument("--local_rank", type=int, default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument("--server_ip", type=str, default="",
                        help="For distant debugging.")
    parser.add_argument("--server_port", type=str,
                        default="", help="For distant debugging.")
    args = parser.parse_args()

    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device(
            "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend="nccl")
        args.n_gpu = 1
    args.device = device

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
    )

    # Set seed
    set_seed(args)

    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
    )

    if args.local_rank == 0:
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(
            args, args.task_name, tokenizer, evaluate=False)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s",
                    global_step, tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))

        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
        model.to(args.device)

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        if args.do_train:
            tokenizer = tokenizer_class.from_pretrained(
                args.output_dir, do_lower_case=args.do_lower_case)
            checkpoints = [args.output_dir]
            if args.eval_all_checkpoints:
                checkpoints = list(
                    os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
                )
                logging.getLogger("transformers.modeling_utils").setLevel(
                    logging.WARN)  # Reduce logging
            logger.info("Evaluate the following checkpoints: %s", checkpoints)
            for checkpoint in checkpoints:
                global_step = checkpoint.split(
                    "-")[-1] if len(checkpoints) > 1 else ""
                prefix = checkpoint.split(
                    "/")[-1] if checkpoint.find("checkpoint") != -1 else ""

                model = model_class.from_pretrained(checkpoint)
                model.to(args.device)
                result = evaluate(args, model, tokenizer, prefix=prefix)
                result = dict((k + "_{}".format(global_step), v)
                              for k, v in result.items())
                results.update(result)
        else:
            tokenizer = tokenizer_class.from_pretrained(
                args.model_name_or_path)
            model = model_class.from_pretrained(args.model_name_or_path)
            model.to(args.device)
            prefix = args.data_dir.split("/")[-1]
            print(prefix)
            result = evaluate(args, model, tokenizer, prefix=prefix)
            result = dict((k, v) for k, v in result.items())
            results.update(result)

    if args.do_pred:
        tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
        model = model_class.from_pretrained(args.model_name_or_path)
        model.to(args.device)
        prefix = args.data_dir.split("/")[-1]
        print(prefix)
        result = prediction(args, model, tokenizer, prefix=prefix)
        result = dict((k, v) for k, v in result.items())
        results.update(result)

    return results