コード例 #1
0
def test():
    """ Evaluate on test set """
    actions = data_utils.define_actions(FLAGS.action)

    number_of_actions = len(actions)

    # Load camera parameters
    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

    # Load 3d data and load (or create) 2d projections
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

    # Read stacked hourglass 2D predictions if use_sh, otherwise use groundtruth 2D projections
    if FLAGS.use_sh:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
            actions, FLAGS.data_dir)
    else:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data(
            actions, FLAGS.data_dir, rcams)
    print("done reading and normalizing data.")

    # Avoid using the GPU if requested
    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    with tf.Session(config=tf.ConfigProto(device_count=device_count,
                                          allow_soft_placement=True)) as sess:

        # === Create the model ===
        print("Creating %d bi-layers of %d units." %
              (FLAGS.num_layers, FLAGS.linear_size))
        model = create_model(sess, actions, FLAGS.batch_size)
        model.train_writer.add_graph(sess.graph)
        print("Model created")

        #=== This is the training loop ===
        step_time, loss, val_loss = 0.0, 0.0, 0.0
        current_step = 0 if FLAGS.load <= 0 else FLAGS.load + 1
        previous_losses = []

        step_time, loss = 0, 0
        current_epoch = 0
        log_every_n_batches = 100

        for _ in xrange(1):
            # === Testing after this epoch ===
            isTraining = False
            if FLAGS.evaluateActionWise:
                print("{0:=^12} {1:=^6}".format(
                    "Action", "mm"))  # line of 30 equal signs
                cum_err = 0
                for action in actions:

                    print("{0:<12} ".format(action), end="")
                    # Get 2d and 3d testing data for this action
                    action_test_set_2d = get_action_subset(test_set_2d, action)
                    action_test_set_3d = get_action_subset(test_set_3d, action)
                    encoder_inputs, decoder_outputs, _ = data_utils.get_all_batches( action_test_set_2d, action_test_set_3d, FLAGS.camera_frame, training=False,\
                        n_context=FLAGS.n_context, new_dim=False, batch_size=FLAGS.batch_size)

                    act_err, _, step_time, loss = evaluate_batches(
                        sess,
                        model,
                        data_mean_3d,
                        data_std_3d,
                        dim_to_use_3d,
                        dim_to_ignore_3d,
                        data_mean_2d,
                        data_std_2d,
                        dim_to_use_2d,
                        dim_to_ignore_2d,
                        current_step,
                        encoder_inputs,
                        decoder_outputs,
                        test_set_2d=action_test_set_2d)
                    cum_err = cum_err + act_err

                    print("{0:>6.2f}".format(act_err))
                # summaries = sess.run( model.err_mm_summary, {model.err_mm: float(cum_err/float(len(actions)))} )
                # model.test_writer.add_summary( summaries, current_step )
                print("{0:<12} {1:>6.2f}".format("Average", cum_err /
                                                 float(len(actions))))
                print("{0:=^19}".format(''))

            else:
                pass

                # n_joints = 17 if not(FLAGS.predict_14) else 14
                # encoder_inputs, decoder_outputs, _ = data_utils.get_all_batches( test_set_2d, test_set_3d, FLAGS.camera_frame,\
                #     training=False, n_context=FLAGS.n_context, new_dim=False, batch_size=FLAGS.batch_size)
                #
                # total_err, joint_err, step_time, loss = evaluate_batches( sess, model,
                #   data_mean_3d, data_std_3d, dim_to_use_3d, dim_to_ignore_3d,
                #   data_mean_2d, data_std_2d, dim_to_use_2d, dim_to_ignore_2d,
                #   current_step, encoder_inputs, decoder_outputs, current_epoch )
                #
                # print("=============================\n"
                #       "Step-time (ms):      %.4f\n"
                #       "Val loss avg:        %.4f\n"
                #       "Val error avg (mm):  %.2f\n"
                #       "=============================" % ( 1000*step_time, loss, total_err ))
                #
                # for i in range(n_joints):
                #   # 6 spaces, right-aligned, 5 decimal places
                #   print("Error in joint {0:02d} (mm): {1:>5.2f}".format(i+1, joint_err[i]))
                # print("=============================")

                # Log the error to tensorboard
                # summaries = sess.run( model.err_mm_summary, {model.err_mm: total_err} )
                # model.test_writer.add_summary( summaries, current_step )

            # Save the model
            # print( "Saving the model... ", end="" )
            # start_time = time.time()
            # model.saver.save(sess, os.path.join(train_dir, 'checkpoint'), global_step=current_step )
            # print( "done in {0:.2f} ms".format(1000*(time.time() - start_time)) )

            # Reset global time and loss
            step_time, loss = 0, 0
            sys.stdout.flush()
コード例 #2
0
def train():
  """Train a linear model for 3d pose estimation"""

  actions = data_utils.define_actions( FLAGS.action )

  number_of_actions = len( actions )

  # Load camera parameters
  SUBJECT_IDS = [1,5,6,7,8,9,11]
  rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

  # Load 3d data and load (or create) 2d projections
  train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
    actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14 )

  # Read stacked hourglass 2D predictions if use_sh, otherwise use groundtruth 2D projections
  if FLAGS.use_sh:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, FLAGS.data_dir)
  else:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data( actions, FLAGS.data_dir, rcams )
  print( "done reading and normalizing data." )

  # Avoid using the GPU if requested
  device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
  with tf.Session(config=tf.ConfigProto(
    device_count=device_count,
    allow_soft_placement=True )) as sess:

    # === Create the model ===
    print("Creating %d bi-layers of %d units." % (FLAGS.num_layers, FLAGS.linear_size))
    model = create_model( sess, actions, FLAGS.batch_size )
    model.train_writer.add_graph( sess.graph )
    print("Model created")

    #=== This is the training loop ===
    step_time, loss, val_loss = 0.0, 0.0, 0.0
    current_step = 0 if FLAGS.load <= 0 else FLAGS.load + 1
    previous_losses = []

    step_time, loss = 0, 0
    current_epoch = 0
    log_every_n_batches = 100

    for _ in xrange( FLAGS.epochs ):
      current_epoch = current_epoch + 1

      # === Load training batches for one epoch ===
      encoder_inputs, decoder_outputs = model.get_all_batches( train_set_2d, train_set_3d, FLAGS.camera_frame, training=True )
      nbatches = len( encoder_inputs )
      print("There are {0} train batches".format( nbatches ))
      start_time, loss = time.time(), 0.

      # === Loop through all the training batches ===
      for i in range( nbatches ):

        if (i+1) % log_every_n_batches == 0:
          # Print progress every log_every_n_batches batches
          print("Working on epoch {0}, batch {1} / {2}... ".format( current_epoch, i+1, nbatches), end="" )

        enc_in, dec_out = encoder_inputs[i], decoder_outputs[i]
        step_loss, loss_summary, lr_summary, _ =  model.step( sess, enc_in, dec_out, FLAGS.dropout, isTraining=True )

        if (i+1) % log_every_n_batches == 0:
          # Log and print progress every log_every_n_batches batches
          model.train_writer.add_summary( loss_summary, current_step )
          model.train_writer.add_summary( lr_summary, current_step )
          step_time = (time.time() - start_time)
          start_time = time.time()
          print("done in {0:.2f} ms".format( 1000*step_time / log_every_n_batches ) )

        loss += step_loss
        current_step += 1
        # === end looping through training batches ===

      loss = loss / nbatches
      print("=============================\n"
            "Global step:         %d\n"
            "Learning rate:       %.2e\n"
            "Train loss avg:      %.4f\n"
            "=============================" % (model.global_step.eval(),
            model.learning_rate.eval(), loss) )
      # === End training for an epoch ===

      # === Testing after this epoch ===
      isTraining = False

      if FLAGS.evaluateActionWise:

        print("{0:=^12} {1:=^6}".format("Action", "mm")) # line of 30 equal signs

        cum_err = 0
        for action in actions:

          print("{0:<12} ".format(action), end="")
          # Get 2d and 3d testing data for this action
          action_test_set_2d = get_action_subset( test_set_2d, action )
          action_test_set_3d = get_action_subset( test_set_3d, action )
          encoder_inputs, decoder_outputs = model.get_all_batches( action_test_set_2d, action_test_set_3d, FLAGS.camera_frame, training=False)

          act_err, _, step_time, loss = evaluate_batches( sess, model,
            data_mean_3d, data_std_3d, dim_to_use_3d, dim_to_ignore_3d,
            data_mean_2d, data_std_2d, dim_to_use_2d, dim_to_ignore_2d,
            current_step, encoder_inputs, decoder_outputs )
          cum_err = cum_err + act_err

          print("{0:>6.2f}".format(act_err))

        summaries = sess.run( model.err_mm_summary, {model.err_mm: float(cum_err/float(len(actions)))} )
        model.test_writer.add_summary( summaries, current_step )
        print("{0:<12} {1:>6.2f}".format("Average", cum_err/float(len(actions) )))
        print("{0:=^19}".format(''))

      else:

        n_joints = 17 if not(FLAGS.predict_14) else 14
        encoder_inputs, decoder_outputs = model.get_all_batches( test_set_2d, test_set_3d, FLAGS.camera_frame, training=False)

        total_err, joint_err, step_time, loss = evaluate_batches( sess, model,
          data_mean_3d, data_std_3d, dim_to_use_3d, dim_to_ignore_3d,
          data_mean_2d, data_std_2d, dim_to_use_2d, dim_to_ignore_2d,
          current_step, encoder_inputs, decoder_outputs, current_epoch )

        print("=============================\n"
              "Step-time (ms):      %.4f\n"
              "Val loss avg:        %.4f\n"
              "Val error avg (mm):  %.2f\n"
              "=============================" % ( 1000*step_time, loss, total_err ))

        for i in range(n_joints):
          # 6 spaces, right-aligned, 5 decimal places
          print("Error in joint {0:02d} (mm): {1:>5.2f}".format(i+1, joint_err[i]))
        print("=============================")

        # Log the error to tensorboard
        summaries = sess.run( model.err_mm_summary, {model.err_mm: total_err} )
        model.test_writer.add_summary( summaries, current_step )

      # Save the model
      print( "Saving the model... ", end="" )
      start_time = time.time()
      model.saver.save(sess, os.path.join(train_dir, 'checkpoint'), global_step=current_step )
      print( "done in {0:.2f} ms".format(1000*(time.time() - start_time)) )

      # Reset global time and loss
      step_time, loss = 0, 0

      sys.stdout.flush()
コード例 #3
0
def hankgogo(gogodata, gogodatafake):
    """Get samples from a model and visualize them"""

    actions = data_utils.define_actions(FLAGS.action)

    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

    # Load 3d data and load (or create) 2d projections
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

    #if FLAGS.use_sh:
    #  train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, FLAGS.data_dir)
    #else:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data(
        actions, FLAGS.data_dir, rcams)
    print("done reading and normalizing data.")

    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    with tf.Session(config=tf.ConfigProto(device_count=device_count)) as sess:
        # === Create the model ===
        print("Creating %d layers of %d units." %
              (FLAGS.num_layers, FLAGS.linear_size))
        batch_size = 1
        model = create_model_my(sess, actions, batch_size)
        print("Model loaded")

        # Dropout probability 0 (keep probability 1) for sampling
        dp = 1.0
        poses3d = model.step(sess, gogodata, isTraining=False)
        tesmp = poses3d
        poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d,
                                             data_std_3d, dim_to_ignore_3d)
        model.saver.save(sess, os.path.join(mysave_dir, "gogo"))

    # Grab a random batch to visualize

# enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, poses3d] )
# idx = np.random.permutation( enc_in.shape[0] )
# enc_in, dec_out, poses3d = enc_in[idx, :], dec_out[idx, :], poses3d[idx, :]

# Visualize random samples
    import matplotlib.gridspec as gridspec

    # 1080p	= 1,920 x 1,080
    fig = plt.figure(figsize=(19.2, 10.8))

    gs1 = gridspec.GridSpec(5, 9)  # 5 rows, 9 columns
    gs1.update(wspace=-0.00, hspace=0.05)  # set the spacing between axes.
    plt.axis('off')

    subplot_idx, exidx = 1, 1
    nsamples = 1
    # Plot 2d pose
    #ax1 = plt.subplot(gs1[subplot_idx-1])
    #p2d = enc_in[exidx,:]
    #viz.show2Dpose( p2d, ax1 )
    #ax1.invert_yaxis()

    # Plot 3d gt
    #ax2 = plt.subplot(gs1[subplot_idx], projection='3d')
    #p3d = dec_out[exidx,:]
    #viz.show3Dpose( p3d, ax2 )

    # Plot 3d predictions
    ax3 = plt.subplot(gs1[subplot_idx + 1], projection='3d')
    p3d = poses3d
    viz.show3Dpose(p3d, ax3, lcolor="#9b59b6", rcolor="#2ecc71")

    exidx = exidx + 1
    subplot_idx = subplot_idx + 3

    plt.show()
コード例 #4
0
def main(_):
    actions_all = data_utils.define_actions("All")
    actions = data_utils.define_actions("Discussion")

    # Load camera parameters
    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

    # Load 3d data and load (or create) 2d projections
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)
    train_set_3d = data_utils.remove_first_frame(train_set_3d)
    test_set_3d = data_utils.remove_first_frame(test_set_3d)
    train_root_positions = data_utils.remove_first_frame(train_root_positions)
    test_root_positions = data_utils.remove_first_frame(test_root_positions)
    print("Finished Read 3D Data")

    # train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions_all, FLAGS.data_dir)
    # train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.transform_to_2d_biframe_prediction(train_set_2d,
    #                                                                                                                                        test_set_2d,
    #                                                                                                                                        data_mean_2d,
    #                                                                                                                                        data_std_2d,
    #                                                                                                                                        dim_to_ignore_2d,
    #                                                                                                                                        dim_to_use_2d)
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data(
        actions_all, FLAGS.data_dir, rcams)
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.transform_to_2d_biframe_prediction(
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d,
        dim_to_use_2d)

    SH_TO_GT_PERM = np.array(
        [SH_NAMES.index(h) for h in H36M_NAMES if h != '' and h in SH_NAMES])
    assert np.all(SH_TO_GT_PERM == np.array(
        [6, 2, 1, 0, 3, 4, 5, 7, 8, 9, 13, 14, 15, 12, 11, 10]))

    test_set = {}

    manipulation_dir = os.path.dirname(FLAGS.data_dir)
    manipulation_dir = os.path.dirname(manipulation_dir)
    manipulation_dir += '/manipulation_video/'
    manipulation_folders = glob.glob(manipulation_dir + '*')

    subj = 1
    action = 'manipulation-video'
    for folder in manipulation_folders:
        seqname = os.path.basename(folder)
        with h5py.File(folder + '/' + seqname + '.h5', 'r') as h5f:
            poses = h5f['poses'][:]

            # Permute the loaded data to make it compatible with H36M
            poses = poses[:, SH_TO_GT_PERM, :]

            # Reshape into n x (32*2) matrix
            poses = np.reshape(poses, [poses.shape[0], -1])
            poses_final = np.zeros([poses.shape[0], len(H36M_NAMES) * 2])

            dim_to_use_x = np.where(
                np.array([x != '' and x != 'Neck/Nose'
                          for x in H36M_NAMES]))[0] * 2
            dim_to_use_y = dim_to_use_x + 1

            dim_to_use = np.zeros(len(SH_NAMES) * 2, dtype=np.int32)
            dim_to_use[0::2] = dim_to_use_x
            dim_to_use[1::2] = dim_to_use_y
            poses_final[:, dim_to_use] = poses

            print(seqname, poses_final.shape)
            poses_final[poses_final == 0.] = 0.1
            test_set[(subj, action, seqname)] = poses_final

    test_set = data_utils.uni_frame_to_bi_frame(test_set)
    test_set_2d = data_utils.normalize_data(test_set, data_mean_2d,
                                            data_std_2d, dim_to_use_2d)
    for key in test_set.keys():
        test_set[key] = test_set[key][0::2, :]

    dim_to_use_12_manipulation_joints = np.array([
        3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19, 20, 21, 22, 23, 24, 25, 26, 51,
        52, 53, 54, 55, 56, 57, 58, 59, 75, 76, 77, 78, 79, 80, 81, 82, 83
    ])

    print("Finished Normalize Manipualtion Videos")
    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    with tf.Session(config=tf.ConfigProto(device_count=device_count)) as sess:
        # === Create the model ===
        print("Creating %d layers of %d units." %
              (FLAGS.num_layers, FLAGS.linear_size))
        batch_size = FLAGS.batch_size  #Intial code is 64*2
        model = predict_3dpose_biframe.create_model(sess, actions_all,
                                                    batch_size)
        print("Model loaded")

        j = 0
        for key2d in test_set_2d.keys():

            (subj, b, fname) = key2d
            # if fname !=  specific_seqname + '.h5':
            #     continue
            print("Subject: {}, action: {}, fname: {}".format(subj, b, fname))

            enc_in = test_set_2d[key2d]
            n2d, _ = enc_in.shape

            # Split into about-same-size batches
            enc_in = np.array_split(enc_in, n2d // 1)
            all_poses_3d = []

            for bidx in range(len(enc_in)):

                # Dropout probability 0 (keep probability 1) for sampling
                dp = 1.0
                anything = np.zeros((enc_in[bidx].shape[0], 48))
                _, _, poses3d = model.step(sess,
                                           enc_in[bidx],
                                           anything,
                                           dp,
                                           isTraining=False)

                # Denormalize
                enc_in[bidx] = data_utils.unNormalizeData(
                    enc_in[bidx], data_mean_2d, data_std_2d, dim_to_ignore_2d)
                poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d,
                                                     data_std_3d,
                                                     dim_to_ignore_3d)
                all_poses_3d.append(poses3d)

            # Put all the poses together
            enc_in, poses3d = map(np.vstack, [enc_in, all_poses_3d])

            enc_in, poses3d = map(np.vstack, [enc_in, poses3d])

            poses3d_12_manipulation = poses3d[:,
                                              dim_to_use_12_manipulation_joints]

            annotated_images = glob.glob(manipulation_dir + fname +
                                         '/info/*.xml')
            annotated_images = sorted(annotated_images)

            # 1080p	= 1,920 x 1,080
            fig = plt.figure(j, figsize=(10, 10))
            gs1 = gridspec.GridSpec(3, 3)
            gs1.update(wspace=-0, hspace=0.1)  # set the spacing between axes.
            plt.axis('off')

            subplot_idx = 1
            nsamples = 3
            for i in np.arange(nsamples):
                # Plot 2d Detection
                ax1 = plt.subplot(gs1[subplot_idx - 1])
                img = mpimg.imread(
                    manipulation_dir + fname + '/skeleton_cropped/' +
                    os.path.basename(annotated_images[i]).split('_')[0] +
                    '.jpg')
                ax1.imshow(img)

                # Plot 2d pose
                ax2 = plt.subplot(gs1[subplot_idx])
                # p2d = enc_in[i,:]
                # viz.show2Dpose( p2d, ax2 )
                # ax2.invert_yaxis()
                ax2.imshow(img)

                # Plot 3d predictions
                # Compute first the procrustion and print error
                gt = getJ3dPosFromXML(annotated_images[i])
                A = poses3d_12_manipulation[i, :].reshape(gt.shape)
                _, Z, T, b, c = procrustes.compute_similarity_transform(
                    gt, A, compute_optimal_scale=True)
                sqerr = np.sqrt(np.sum((gt - (b * A.dot(T)) - c)**2, axis=1))
                print("{0} - {1} - Mean Error (mm) : {2}".format(
                    fname, os.path.basename(annotated_images[i]),
                    np.mean(sqerr)))

                ax3 = plt.subplot(gs1[subplot_idx + 1], projection='3d')
                temp = poses3d[i, :].reshape((32, 3))
                temp = c + temp.dot(T)  #Do not scale
                # p3d = temp.reshape((1, 96))
                p3d = poses3d[i, :]
                viz.show3Dpose(p3d, ax3, lcolor="#9b59b6", rcolor="#2ecc71")
                ax3.invert_zaxis()
                ax3.invert_yaxis()

                subplot_idx = subplot_idx + 3

            plt.show()
            j += 1
def test():

    actions = data_utils.define_actions(FLAGS.action)

    # Load camera parameters
    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

    # Load 3d data and load (or create) 2d projections
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

    # Read stacked hourglass 2D predictions if use_sh, otherwise use groundtruth 2D projections
    if FLAGS.use_sh:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
            actions, FLAGS.data_dir)
    else:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data(
            actions, FLAGS.data_dir, rcams)

    # Avoid using the GPU if requested
    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    with tf.Session(config=tf.ConfigProto(device_count=device_count,
                                          allow_soft_placement=True)) as sess:

        # === Create the model ===
        print("Creating %d bi-layers of %d units." %
              (FLAGS.num_layers, FLAGS.linear_size))
        model = create_model(sess, actions, FLAGS.batch_size)
        model.train_writer.add_graph(sess.graph)

        current_step = 0 if FLAGS.load <= 0 else FLAGS.load + 1

        if FLAGS.evaluateActionWise:

            logger.info("{0:=^12} {1:=^6}".format(
                "Action", "mm"))  # line of 30 equal signs

            cum_err = 0  # select the mixture model which has mininum error
            for action in actions:

                # Get 2d and 3d testing data for this action
                action_test_set_2d = get_action_subset(test_set_2d, action)
                action_test_set_3d = get_action_subset(test_set_3d, action)
                encoder_inputs, decoder_outputs, repro_info = model.get_all_batches(
                    action_test_set_2d,
                    action_test_set_3d,
                    FLAGS.camera_frame,
                    training=False)

                act_err, step_time, loss = evaluate_batches(
                    sess, model, data_mean_3d, data_std_3d, dim_to_use_3d,
                    dim_to_ignore_3d, data_mean_2d, data_std_2d, dim_to_use_2d,
                    dim_to_ignore_2d, current_step, encoder_inputs,
                    decoder_outputs)

                cum_err = cum_err + act_err
                logger.info('{0:<12} {1:>6.2f}'.format(action, act_err))

            summaries = sess.run(
                model.err_mm_summary,
                {model.err_mm: float(cum_err / float(len(actions)))})
            model.test_writer.add_summary(summaries, current_step)

            logger.info('{0:<12} {1:>6.2f}'.format(
                "Average", cum_err / float(len(actions))))

            logger.info('{0:=^19}'.format(''))
def sample():
    """Get samples from a model and visualize them"""
    path = '{}/samples_sh'.format(FLAGS.train_dir)
    if not os.path.exists(path):
        os.makedirs(path)
    actions = data_utils.define_actions(FLAGS.action)

    # Load camera parameters
    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)
    n_joints = 17 if not (FLAGS.predict_14) else 14

    # Load 3d data and load (or create) 2d projections
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

    if FLAGS.use_sh:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
            actions, FLAGS.data_dir)
    else:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d, _ = data_utils.create_2d_data(
            actions, FLAGS.data_dir, rcams)

    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    with tf.Session(config=tf.ConfigProto(device_count=device_count)) as sess:
        # === Create the model ===

        batch_size = 128
        model = create_model(sess, actions, batch_size)
        print("Model loaded")

        for key2d in test_set_2d.keys():

            (subj, b, fname) = key2d

            # choose SittingDown action to visualize
            if b == 'SittingDown':
                print("Subject: {}, action: {}, fname: {}".format(
                    subj, b, fname))

                # keys should be the same if 3d is in camera coordinates
                key3d = key2d if FLAGS.camera_frame else (
                    subj, b, '{0}.h5'.format(fname.split('.')[0]))
                key3d = (subj, b, fname[:-3]) if (
                    fname.endswith('-sh')) and FLAGS.camera_frame else key3d

                enc_in = test_set_2d[key2d]
                n2d, _ = enc_in.shape
                dec_out = test_set_3d[key3d]
                n3d, _ = dec_out.shape
                assert n2d == n3d

                # Split into about-same-size batches

                enc_in = np.array_split(enc_in, n2d // batch_size)
                dec_out = np.array_split(dec_out, n3d // batch_size)

                # store all pose hypotheses in a list
                pose_3d_mdm = [[], [], [], [], []]

                for bidx in range(len(enc_in)):

                    # Dropout probability 0 (keep probability 1) for sampling
                    dp = 1.0
                    loss, _, out_all_components = model.step(sess,
                                                             enc_in[bidx],
                                                             dec_out[bidx],
                                                             dp,
                                                             isTraining=False)

                    # denormalize the input 2d pose, ground truth 3d pose as well as 3d pose hypotheses from mdm
                    out_all_components = np.reshape(
                        out_all_components,
                        [-1, model.HUMAN_3D_SIZE + 2, model.num_models])
                    out_mean = out_all_components[:, :model.HUMAN_3D_SIZE, :]

                    enc_in[bidx] = data_utils.unNormalizeData(
                        enc_in[bidx], data_mean_2d, data_std_2d,
                        dim_to_ignore_2d)
                    dec_out[bidx] = data_utils.unNormalizeData(
                        dec_out[bidx], data_mean_3d, data_std_3d,
                        dim_to_ignore_3d)
                    poses3d = np.zeros(
                        (out_mean.shape[0], 96, out_mean.shape[-1]))
                    for j in range(out_mean.shape[-1]):
                        poses3d[:, :, j] = data_utils.unNormalizeData(
                            out_mean[:, :, j], data_mean_3d, data_std_3d,
                            dim_to_ignore_3d)

                    # extract the 17 joints
                    dtu3d = np.hstack(
                        (np.arange(3), dim_to_use_3d
                         )) if not (FLAGS.predict_14) else dim_to_use_3d
                    dec_out_17 = dec_out[bidx][:, dtu3d]
                    pose_3d_17 = poses3d[:, dtu3d, :]
                    sqerr = (pose_3d_17 -
                             np.expand_dims(dec_out_17, axis=2))**2
                    dists = np.zeros(
                        (sqerr.shape[0], n_joints, sqerr.shape[2]))
                    for m in range(dists.shape[-1]):
                        dist_idx = 0
                        for k in np.arange(0, n_joints * 3, 3):
                            dists[:, dist_idx, m] = np.sqrt(
                                np.sum(sqerr[:, k:k + 3, m], axis=1))
                            dist_idx = dist_idx + 1

                    [
                        pose_3d_mdm[i].append(poses3d[:, :, i])
                        for i in range(poses3d.shape[-1])
                    ]

                # Put all the poses together
                enc_in, dec_out = map(np.vstack, [enc_in, dec_out])
                for i in range(poses3d.shape[-1]):
                    pose_3d_mdm[i] = np.vstack(pose_3d_mdm[i])

                    # Convert back to world coordinates
                if FLAGS.camera_frame:
                    N_CAMERAS = 4
                    N_JOINTS_H36M = 32

                    # Add global position back
                    dec_out = dec_out + np.tile(test_root_positions[key3d],
                                                [1, N_JOINTS_H36M])
                    for i in range(poses3d.shape[-1]):
                        pose_3d_mdm[i] = pose_3d_mdm[i] + np.tile(
                            test_root_positions[key3d], [1, N_JOINTS_H36M])

                    # Load the appropriate camera
                    subj, action, sname = key3d

                    cname = sname.split('.')[1]  # <-- camera name
                    scams = {(subj, c + 1): rcams[(subj, c + 1)]
                             for c in range(N_CAMERAS)}  # cams of this subject
                    scam_idx = [
                        scams[(subj, c + 1)][-1] for c in range(N_CAMERAS)
                    ].index(cname)  # index of camera used
                    the_cam = scams[(subj,
                                     scam_idx + 1)]  # <-- the camera used
                    R, T, f, c, k, p, name = the_cam
                    assert name == cname

                    def cam2world_centered(data_3d_camframe):
                        data_3d_worldframe = cameras.camera_to_world_frame(
                            data_3d_camframe.reshape((-1, 3)), R, T)
                        data_3d_worldframe = data_3d_worldframe.reshape(
                            (-1, N_JOINTS_H36M * 3))
                        # subtract root translation
                        return data_3d_worldframe - np.tile(
                            data_3d_worldframe[:, :3], (1, N_JOINTS_H36M))

                    # Apply inverse rotation and translation
                    dec_out = cam2world_centered(dec_out)
                    for i in range(poses3d.shape[-1]):
                        pose_3d_mdm[i] = cam2world_centered(pose_3d_mdm[i])

                # sample some results to visualize
                np.random.seed(42)
                idx = np.random.permutation(enc_in.shape[0])
                enc_in, dec_out = enc_in[idx, :], dec_out[idx, :]
                for i in range(poses3d.shape[-1]):
                    pose_3d_mdm[i] = pose_3d_mdm[i][idx, :]

                exidx = 1
                nsamples = 20

                for i in np.arange(nsamples):
                    fig = plt.figure(figsize=(20, 5))

                    subplot_idx = 1
                    gs1 = gridspec.GridSpec(1, 7)  # 5 rows, 9 columns
                    gs1.update(wspace=-0.00,
                               hspace=0.05)  # set the spacing between axes.
                    plt.axis('off')

                    # Plot 2d pose
                    ax1 = plt.subplot(gs1[subplot_idx - 1])
                    p2d = enc_in[exidx, :]
                    viz.show2Dpose(p2d, ax1)
                    ax1.invert_yaxis()

                    # Plot 3d gt
                    ax2 = plt.subplot(gs1[subplot_idx], projection='3d')
                    p3d = dec_out[exidx, :]
                    viz.show3Dpose(p3d, ax2)

                    # Plot 3d pose hypotheses

                    for i in range(poses3d.shape[-1]):
                        ax3 = plt.subplot(gs1[subplot_idx + i + 1],
                                          projection='3d')
                        p3d = pose_3d_mdm[i][exidx]
                        viz.show3Dpose(p3d,
                                       ax3,
                                       lcolor="#9b59b6",
                                       rcolor="#2ecc71")
                    # plt.show()
                    plt.savefig('{}/sample_{}_{}_{}_{}.png'.format(
                        path, subj, action, scam_idx, exidx))
                    plt.close(fig)
                    exidx = exidx + 1
コード例 #7
0
def sample():

  actions = data_utils.define_actions( FLAGS.action )

  SUBJECT_IDS = [1,5,6,7,8,9,11]
  rcams = load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

  train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
    actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14 )

  if FLAGS.use_sh:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, FLAGS.data_dir)
  else:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data( actions, FLAGS.data_dir, rcams )
  print( "done reading and normalizing data." )

  device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
  with tf.Session(config=tf.ConfigProto( device_count = device_count )) as sess:
    print("Creating %d layers of %d units." % (FLAGS.num_layers, FLAGS.linear_size))
    batch_size = 128
    model = create_model(sess, actions, batch_size)
    print("Model loaded")

    for key2d in test_set_2d.keys():

      (subj, b, fname) = key2d
      print( "Subject: {}, action: {}, fname: {}".format(subj, b, fname) )

      key3d = key2d if FLAGS.camera_frame else (subj, b, '{0}.h5'.format(fname.split('.')[0]))
      key3d = (subj, b, fname[:-3]) if (fname.endswith('-sh')) and FLAGS.camera_frame else key3d

      enc_in  = test_set_2d[ key2d ]
      n2d, _ = enc_in.shape
      dec_out = test_set_3d[ key3d ]
      n3d, _ = dec_out.shape
      assert n2d == n3d

      enc_in   = np.array_split( enc_in,  n2d // batch_size )
      dec_out  = np.array_split( dec_out, n3d // batch_size )
      all_poses_3d = []

      for bidx in range( len(enc_in) ):

        dp = 1.0
        _, _, poses3d = model.step(sess, enc_in[bidx], dec_out[bidx], dp, isTraining=False)

        enc_in[bidx]  = data_utils.unNormalizeData(  enc_in[bidx], data_mean_2d, data_std_2d, dim_to_ignore_2d )
        dec_out[bidx] = data_utils.unNormalizeData( dec_out[bidx], data_mean_3d, data_std_3d, dim_to_ignore_3d )
        poses3d = data_utils.unNormalizeData( poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d )
        all_poses_3d.append( poses3d )

      enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, all_poses_3d] )

      if FLAGS.camera_frame:
        N_CAMERAS = 4
        N_JOINTS_H36M = 32

        dec_out = dec_out + np.tile( test_root_positions[ key3d ], [1,N_JOINTS_H36M] )
        subj, _, sname = key3d

        cname = sname.split('.')[1] 
        scams = {(subj,c+1): rcams[(subj,c+1)] for c in range(N_CAMERAS)} 
        scam_idx = [scams[(subj,c+1)][-1] for c in range(N_CAMERAS)].index( cname )
        the_cam  = scams[(subj, scam_idx+1)]
        R, T, f, c, k, p, name = the_cam
        assert name == cname

        def cam2world_centered(data_3d_camframe):
          data_3d_worldframe = camera_to_world_frame(data_3d_camframe.reshape((-1, 3)), R, T)
          data_3d_worldframe = data_3d_worldframe.reshape((-1, N_JOINTS_H36M*3))
          return data_3d_worldframe - np.tile( data_3d_worldframe[:,:3], (1,N_JOINTS_H36M) )

        dec_out = cam2world_centered(dec_out)
        poses3d = cam2world_centered(poses3d)

  enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, poses3d] )
  idx = np.random.permutation( enc_in.shape[0] )
  enc_in, dec_out, poses3d = enc_in[idx, :], dec_out[idx, :], poses3d[idx, :]

  import matplotlib.gridspec as gridspec

  fig = plt.figure( figsize=(19.2, 10.8) )

  gs1 = gridspec.GridSpec(5, 9)
  gs1.update(wspace=-0.00, hspace=0.05)
  plt.axis('off')

  subplot_idx, exidx = 1, 1
  nsamples = 15
  for i in np.arange( nsamples ):

    ax1 = plt.subplot(gs1[subplot_idx-1])
    p2d = enc_in[exidx,:]
    viz.show2Dpose( p2d, ax1 )
    ax1.invert_yaxis()

    ax2 = plt.subplot(gs1[subplot_idx], projection='3d')
    p3d = dec_out[exidx,:]
    viz.show3Dpose( p3d, ax2 )

    ax3 = plt.subplot(gs1[subplot_idx+1], projection='3d')
    p3d = poses3d[exidx,:]
    viz.show3Dpose( p3d, ax3, lcolor="#9b59b6", rcolor="#2ecc71" )

    exidx = exidx + 1
    subplot_idx = subplot_idx + 3

  plt.show()
コード例 #8
0
def mpi():
    actions = data_utils.define_actions(FLAGS.action)

    number_of_actions = len(actions)

    # Load camera parameters
    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

    # Load 3d data and load (or create) 2d projections
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir + 'train_images.txt',
        FLAGS.data_dir + 'valid_images.txt', FLAGS.data_dir + 'train.h5',
        FLAGS.data_dir + 'valid.h5', FLAGS.camera_frame, rcams,
        FLAGS.predict_14)

    # Read stacked hourglass 2D predictions if use_sh, otherwise use groundtruth 2D projections
    if FLAGS.use_sh:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
            actions, FLAGS.data_dir + 'train_images.txt',
            FLAGS.data_dir + 'valid_images.txt', FLAGS.data_dir + 'train.h5',
            FLAGS.data_dir + 'valid.h5')
    else:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data(
            actions, FLAGS.data_dir + 'train_images.txt',
            FLAGS.data_dir + 'valid_images.txt', FLAGS.data_dir + 'train.h5',
            FLAGS.data_dir + 'valid.h5', rcams)
    print("done reading and normalizing data.")

    # Load MPI data for testing:
    mpi_test3d, mpi_mean3d, mpi_std3d, mpi_test2d, mpi_mean2d, mpi_std2d = data_utils.read_mpi(
        '/mnt/lustre/xingyifei/test_3dhp/annotTest.h5', True, data_mean_2d,
        data_mean_3d)

    # Avoid using the GPU if requested
    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    with tf.Session(config=tf.ConfigProto(device_count=device_count,
                                          allow_soft_placement=True)) as sess:

        # === Create the model ===
        print("Creating %d bi-layers of %d units." %
              (FLAGS.num_layers, FLAGS.linear_size))
        model = create_model(sess, actions, FLAGS.batch_size)
        model.train_writer.add_graph(sess.graph)
        print("Model created")

        #=== This is the training loop ===
        step_time, loss, val_loss = 0.0, 0.0, 0.0
        current_step = 0 if FLAGS.load <= 0 else FLAGS.load + 1
        previous_losses = []

        step_time, loss = 0, 0
        current_epoch = 0
        log_every_n_batches = 100

        # === Testing after this epoch ===
        isTraining = False

        n_joints = 16 if not (FLAGS.predict_14) else 14

        #Process inputs to batches
        n = len(mpi_test3d)
        n_extra = n % model.batch_size
        if n_extra > 0:  # Otherwise examples are already a multiple of batch size
            encoder_inputs = mpi_test2d[:-n_extra, :, :].reshape(-1, 32)
            decoder_outputs = mpi_test3d[:-n_extra, :, :].reshape(-1, 48)

        n_batches = n // model.batch_size
        encoder_inputs = np.split(encoder_inputs, n_batches)
        decoder_outputs = np.split(decoder_outputs, n_batches)

        nbatches = len(encoder_inputs)

        # Loop through test examples
        all_dists, start_time, loss = [], time.time(), 0.
        log_every_n_batches = 100
        for i in range(nbatches):

            if current_epoch > 0 and (i + 1) % log_every_n_batches == 0:
                print("Working on test epoch {0}, batch {1} / {2}".format(
                    current_epoch, i + 1, nbatches))

            enc_in, dec_out = encoder_inputs[i], decoder_outputs[i]
            dp = 1.0  # dropout keep probability is always 1 at test time
            step_loss, loss_summary, poses3d = model.step(sess,
                                                          enc_in,
                                                          dec_out,
                                                          dp,
                                                          isTraining=False)
            loss += step_loss

            # denormalize
            enc_in = (enc_in.reshape(-1, 16, 2) * mpi_std2d +
                      mpi_mean2d).reshape(-1, 32)
            dec_out = (dec_out.reshape(-1, 16, 3) * mpi_std3d +
                       mpi_mean3d).reshape(-1, 48)
            poses3d = (poses3d.reshape(-1, 16, 3) * mpi_std3d +
                       mpi_mean3d).reshape(-1, 48)

            assert dec_out.shape[0] == FLAGS.batch_size
            assert poses3d.shape[0] == FLAGS.batch_size

            if FLAGS.procrustes:
                # Apply per-frame procrustes alignment if asked to do so
                for j in range(FLAGS.batch_size):
                    gt = np.reshape(dec_out[j, :], [-1, 3])
                    out = np.reshape(poses3d[j, :], [-1, 3])
                    _, Z, T, b, c = procrustes.compute_similarity_transform(
                        gt, out, compute_optimal_scale=True)
                    out = (b * out.dot(T)) + c

                    poses3d[j, :] = np.reshape(out, [-1, 16 * 3]) if not (
                        FLAGS.predict_14) else np.reshape(out, [-1, 14 * 3])

            # Compute Euclidean distance error per joint
            sqerr = (
                poses3d - dec_out
            )**2  # Squared error between prediction and expected output
            dists = np.zeros((sqerr.shape[0],
                              n_joints))  # Array with L2 error per joint in mm
            dist_idx = 0
            for k in np.arange(0, n_joints * 3, 3):
                # Sum across X,Y, and Z dimenstions to obtain L2 distance
                dists[:, dist_idx] = np.sqrt(np.sum(sqerr[:, k:k + 3], axis=1))
                dist_idx = dist_idx + 1

            all_dists.append(dists)
            assert sqerr.shape[0] == FLAGS.batch_size

        step_time = (time.time() - start_time) / nbatches
        loss = loss / nbatches

        all_dists = np.vstack(all_dists)

        PCK_150 = all_dists < 150

        from pdb import set_trace as st
        st()
        #AUC Metric
        non_zero = np.count_nonzero(PCK_150, axis=1) * 1.
        zeros = np.ones(non_zero.shape) * len(PCK_150[0]) - non_zero

        TP = non_zero / len(PCK_150[0])
        FP = zeros / len(PCK_150[0])

        AUC = (1 + TP - FP) / 2.
        AUC = np.mean(AUC)
        #PCK@150
        PCK = np.mean(np.mean(PCK_150, axis=1))

        # Error per joint and total for all passed batches
        joint_err = np.mean(all_dists, axis=0)
        total_err = np.mean(all_dists)

        print("=============================\n"
              "Step-time (ms):      %.4f\n"
              "Val loss avg:        %.4f\n"
              "Val error avg (mm):  %.2f\n"
              "=============================" %
              (1000 * step_time, loss, total_err))

        print("PCK ERROR: " + str(PCK))
        print("AUC ERROR: " + str(AUC))
        for i in range(n_joints):
            # 6 spaces, right-aligned, 5 decimal places
            print("Error in joint {0:02d} (mm): {1:>5.2f}".format(
                i + 1, joint_err[i]))
        print("=============================")
コード例 #9
0
def test():
    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    actions = data_utils.define_actions(FLAGS.action)
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)
    # Load 3d data and load (or create) 2d projections
    """
  train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils_org.read_3d_data(
    actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

  if FLAGS.use_sh:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils_org.read_2d_predictions(actions, FLAGS.data_dir)
  else:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils_org.create_2d_data( actions, FLAGS.data_dir, rcams )
  print( "done reading and normalizing data." )
  """
    # Load 3d data and load (or create) 2d projections
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions, augmented3d, train_set_3d_for_noisy, data_mean_3d_test, data_std_3d_test = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14,
        FLAGS.augment_all, FLAGS.augment_rot, FLAGS.augment_flip,
        FLAGS.augment_trans, FLAGS.add_noise, FLAGS.add_kinematics)
    # Read stacked hourglass 2D predictions if use_sh, otherwise use groundtruth 2D projections

    if FLAGS.use_sh:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
            actions, FLAGS.data_dir)
    else:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d, train_set_2d_for_noisy, data_mean_2d_test, data_std_2d_test = data_utils.create_2d_data(
            actions, FLAGS.data_dir, rcams, augmented3d)
    print("done reading and normalizing data.")

    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
    with tf.Session(config=tf.ConfigProto(device_count=device_count,
                                          gpu_options=gpu_options)) as sess:
        # === Create the model ===
        print("Creating %d layers of %d units." %
              (FLAGS.num_layers, FLAGS.linear_size))
        batch_size = FLAGS.batch_size
        model = create_model(sess, actions, batch_size)
        print("Model loaded")

        if FLAGS.evaluateActionWise:

            print("{0:=^12} {1:=^6}".format("Action",
                                            "mm"))  # line of 30 equal signs

            cum_err = 0
            for action in actions:
                print("{0:<12} ".format(action), end="")
                # Get 2d and 3d testing data for this action
                action_test_set_2d = get_action_subset(test_set_2d, action)
                action_test_set_3d = get_action_subset(test_set_3d, action)
                encoder_inputs, decoder_outputs = model.get_all_batches(
                    action_test_set_2d,
                    action_test_set_3d,
                    FLAGS.camera_frame,
                    training=False)

                act_err, _, step_time, loss = evaluate_batches(
                    sess, model, data_mean_3d_test, data_std_3d_test,
                    dim_to_use_3d, dim_to_ignore_3d, data_mean_2d_test,
                    data_std_2d_test, dim_to_use_2d, dim_to_ignore_2d, 0,
                    encoder_inputs, decoder_outputs)
                cum_err = cum_err + act_err

                print("{0:>6.2f}".format(act_err))

            summaries = sess.run(
                model.err_mm_summary,
                {model.err_mm: float(cum_err / float(len(actions)))})
            model.test_writer.add_summary(summaries, current_step)
            print("{0:<12} {1:>6.2f}".format("Average",
                                             cum_err / float(len(actions))))
            print("{0:=^19}".format(''))
        else:
            n_joints = 17 if not (FLAGS.predict_14) else 14
            encoder_inputs, decoder_outputs = model.get_all_batches(
                test_set_2d, test_set_3d, FLAGS.camera_frame, training=False)

            total_err, joint_err, step_time, loss = evaluate_batches(
                sess, model, data_mean_3d_test, data_std_3d_test,
                dim_to_use_3d, dim_to_ignore_3d, data_mean_2d_test,
                data_std_2d_test, dim_to_use_2d, dim_to_ignore_2d, 0,
                encoder_inputs, decoder_outputs, FLAGS.epochs)

            print("=============================\n"
                  "Step-time (ms):      %.4f\n"
                  "Val loss avg:        %.4f\n"
                  "Val error avg (mm):  %.2f\n"
                  "=============================" %
                  (1000 * step_time, loss, total_err))

            for i in range(n_joints):
                # 6 spaces, right-aligned, 5 decimal places
                print("Error in joint {0:02d} (mm): {1:>5.2f}".format(
                    i + 1, joint_err[i]))
            print("=============================")
コード例 #10
0
def train():
  actions = data_utils.define_actions( FLAGS.action )

  number_of_actions = len( actions )

  SUBJECT_IDS = [1,5,6,7,8,9,11]
  rcams = load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

  train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
    actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14 )

  if FLAGS.use_sh:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, FLAGS.data_dir)
  else:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data( actions, FLAGS.data_dir, rcams )
  print( "done reading and normalizing data." )

  device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
  with tf.Session(config=tf.ConfigProto(
    device_count=device_count,
    allow_soft_placement=True )) as sess:

    print("Creating %d bi-layers of %d units." % (FLAGS.num_layers, FLAGS.linear_size))
    model = create_model( sess, actions, FLAGS.batch_size )
    model.train_writer.add_graph( sess.graph )
    print("Model created")

    step_time, loss, val_loss = 0.0, 0.0, 0.0
    current_step = 0 if FLAGS.load <= 0 else FLAGS.load + 1
    previous_losses = []

    step_time, loss = 0, 0
    current_epoch = 0
    log_every_n_batches = 100

    for _ in xrange( FLAGS.epochs ):
      current_epoch = current_epoch + 1

      encoder_inputs, decoder_outputs = model.get_all_batches( train_set_2d, train_set_3d, FLAGS.camera_frame, training=True )
      nbatches = len( encoder_inputs )
      print("There are {0} train batches".format( nbatches ))
      start_time, loss = time.time(), 0.

      for i in range( nbatches ):

        if (i+1) % log_every_n_batches == 0:
          print("Working on epoch {0}, batch {1} / {2}... ".format( current_epoch, i+1, nbatches), end="" )

        enc_in, dec_out = encoder_inputs[i], decoder_outputs[i]
        step_loss, loss_summary, lr_summary, _ =  model.step( sess, enc_in, dec_out, FLAGS.dropout, isTraining=True )

        if (i+1) % log_every_n_batches == 0:
          model.train_writer.add_summary( loss_summary, current_step )
          model.train_writer.add_summary( lr_summary, current_step )
          step_time = (time.time() - start_time)
          start_time = time.time()
          print("done in {0:.2f} ms".format( 1000*step_time / log_every_n_batches ) )

        loss += step_loss
        current_step += 1

      loss = loss / nbatches
      print("=============================\n"
            "Global step:         %d\n"
            "Learning rate:       %.2e\n"
            "Train loss avg:      %.4f\n"
            "=============================" % (model.global_step.eval(),
            model.learning_rate.eval(), loss) )
      isTraining = False

      if FLAGS.evaluateActionWise:

        print("{0:=^12} {1:=^6}".format("Action", "mm")) 

        cum_err = 0
        for action in actions:

          print("{0:<12} ".format(action), end="")
          action_test_set_2d = get_action_subset( test_set_2d, action )
          action_test_set_3d = get_action_subset( test_set_3d, action )
          encoder_inputs, decoder_outputs = model.get_all_batches( action_test_set_2d, action_test_set_3d, FLAGS.camera_frame, training=False)

          act_err, _, step_time, loss = evaluate_batches( sess, model,
            data_mean_3d, data_std_3d, dim_to_use_3d, dim_to_ignore_3d,
            data_mean_2d, data_std_2d, dim_to_use_2d, dim_to_ignore_2d,
            current_step, encoder_inputs, decoder_outputs )
          cum_err = cum_err + act_err

          print("{0:>6.2f}".format(act_err))

        summaries = sess.run( model.err_mm_summary, {model.err_mm: float(cum_err/float(len(actions)))} )
        model.test_writer.add_summary( summaries, current_step )
        print("{0:<12} {1:>6.2f}".format("Average", cum_err/float(len(actions) )))
        print("{0:=^19}".format(''))

      else:

        n_joints = 17 if not(FLAGS.predict_14) else 14
        encoder_inputs, decoder_outputs = model.get_all_batches( test_set_2d, test_set_3d, FLAGS.camera_frame, training=False)

        total_err, joint_err, step_time, loss = evaluate_batches( sess, model,
          data_mean_3d, data_std_3d, dim_to_use_3d, dim_to_ignore_3d,
          data_mean_2d, data_std_2d, dim_to_use_2d, dim_to_ignore_2d,
          current_step, encoder_inputs, decoder_outputs, current_epoch )

        print("=============================\n"
              "Step-time (ms):      %.4f\n"
              "Val loss avg:        %.4f\n"
              "Val error avg (mm):  %.2f\n"
              "=============================" % ( 1000*step_time, loss, total_err ))

        for i in range(n_joints):
          print("Error in joint {0:02d} (mm): {1:>5.2f}".format(i+1, joint_err[i]))
        print("=============================")

        summaries = sess.run( model.err_mm_summary, {model.err_mm: total_err} )
        model.test_writer.add_summary( summaries, current_step )

      print( "Saving the model... ", end="" )
      start_time = time.time()
      model.saver.save(sess, os.path.join(train_dir, 'checkpoint'), global_step=current_step )
      print( "done in {0:.2f} ms".format(1000*(time.time() - start_time)) )

      step_time, loss = 0, 0

      sys.stdout.flush()
コード例 #11
0
def sample():
  """Get samples from a model and visualize them"""

  actions = data_utils.define_actions( FLAGS.action )

  # Load camera parameters
  SUBJECT_IDS = [1,5,6,7,8,9,11]
  rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

  # Load 3d data and load (or create) 2d projections
  train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
    actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14 )

  if FLAGS.use_sh:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, FLAGS.data_dir)
  else:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data( actions, FLAGS.data_dir, rcams )
  print( "done reading and normalizing data." )

  device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
  with tf.Session(config=tf.ConfigProto( device_count = device_count )) as sess:
    # === Create the model ===
    print("Creating %d layers of %d units." % (FLAGS.num_layers, FLAGS.linear_size))
    batch_size = 128
    model = create_model(sess, actions, batch_size)
    print("Model loaded")

    for key2d in test_set_2d.keys():

      (subj, b, fname) = key2d
      print( "Subject: {}, action: {}, fname: {}".format(subj, b, fname) )

      # keys should be the same if 3d is in camera coordinates
      key3d = key2d if FLAGS.camera_frame else (subj, b, '{0}.h5'.format(fname.split('.')[0]))
      key3d = (subj, b, fname[:-3]) if (fname.endswith('-sh')) and FLAGS.camera_frame else key3d

      enc_in  = test_set_2d[ key2d ]
      n2d, _ = enc_in.shape
      dec_out = test_set_3d[ key3d ]
      n3d, _ = dec_out.shape
      assert n2d == n3d

      # Split into about-same-size batches
      enc_in   = np.array_split( enc_in,  n2d // batch_size )
      dec_out  = np.array_split( dec_out, n3d // batch_size )
      all_poses_3d = []

      for bidx in range( len(enc_in) ):

        # Dropout probability 0 (keep probability 1) for sampling
        dp = 1.0
        _, _, poses3d = model.step(sess, enc_in[bidx], dec_out[bidx], dp, isTraining=False)

        # denormalize
        enc_in[bidx]  = data_utils.unNormalizeData(  enc_in[bidx], data_mean_2d, data_std_2d, dim_to_ignore_2d )
        dec_out[bidx] = data_utils.unNormalizeData( dec_out[bidx], data_mean_3d, data_std_3d, dim_to_ignore_3d )
        poses3d = data_utils.unNormalizeData( poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d )
        all_poses_3d.append( poses3d )

      # Put all the poses together
      enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, all_poses_3d] )

      # Convert back to world coordinates
      if FLAGS.camera_frame:
        N_CAMERAS = 4
        N_JOINTS_H36M = 32

        # Add global position back
        dec_out = dec_out + np.tile( test_root_positions[ key3d ], [1,N_JOINTS_H36M] )

        # Load the appropriate camera
        subj, _, sname = key3d

        cname = sname.split('.')[1] # <-- camera name
        scams = {(subj,c+1): rcams[(subj,c+1)] for c in range(N_CAMERAS)} # cams of this subject
        scam_idx = [scams[(subj,c+1)][-1] for c in range(N_CAMERAS)].index( cname ) # index of camera used
        the_cam  = scams[(subj, scam_idx+1)] # <-- the camera used
        R, T, f, c, k, p, name = the_cam
        assert name == cname

        def cam2world_centered(data_3d_camframe):
          data_3d_worldframe = cameras.camera_to_world_frame(data_3d_camframe.reshape((-1, 3)), R, T)
          data_3d_worldframe = data_3d_worldframe.reshape((-1, N_JOINTS_H36M*3))
          # subtract root translation
          return data_3d_worldframe - np.tile( data_3d_worldframe[:,:3], (1,N_JOINTS_H36M) )

        # Apply inverse rotation and translation
        dec_out = cam2world_centered(dec_out)
        poses3d = cam2world_centered(poses3d)

  # Grab a random batch to visualize
  enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, poses3d] )
  idx = np.random.permutation( enc_in.shape[0] )
  enc_in, dec_out, poses3d = enc_in[idx, :], dec_out[idx, :], poses3d[idx, :]

  # Visualize random samples
  import matplotlib.gridspec as gridspec

  # 1080p	= 1,920 x 1,080
  fig = plt.figure( figsize=(19.2, 10.8) )

  gs1 = gridspec.GridSpec(5, 9) # 5 rows, 9 columns
  gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes.
  plt.axis('off')

  subplot_idx, exidx = 1, 1
  nsamples = 15
  for i in np.arange( nsamples ):

    # Plot 2d pose
    ax1 = plt.subplot(gs1[subplot_idx-1])
    p2d = enc_in[exidx,:]
    viz.show2Dpose( p2d, ax1 )
    ax1.invert_yaxis()

    # Plot 3d gt
    ax2 = plt.subplot(gs1[subplot_idx], projection='3d')
    p3d = dec_out[exidx,:]
    viz.show3Dpose( p3d, ax2 )

    # Plot 3d predictions
    ax3 = plt.subplot(gs1[subplot_idx+1], projection='3d')
    p3d = poses3d[exidx,:]
    viz.show3Dpose( p3d, ax3, lcolor="#9b59b6", rcolor="#2ecc71" )

    exidx = exidx + 1
    subplot_idx = subplot_idx + 3

  plt.show()
コード例 #12
0
def train():
  """Train a linear model for 3d pose estimation"""

  actions = data_utils.define_actions( FLAGS.action )

  number_of_actions = len( actions )

  # Load camera parameters
  SUBJECT_IDS = [1,5,6,7,8,9,11]
  rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

  # Load 3d data and load (or create) 2d projections
  train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
    actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14 )

  # Read stacked hourglass 2D predictions if use_sh, otherwise use groundtruth 2D projections
  if FLAGS.use_sh:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, FLAGS.data_dir)
  else:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data( actions, FLAGS.data_dir, rcams )
  print( "done reading and normalizing data." )

  # Avoid using the GPU if requested
  device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
  with tf.Session(config=tf.ConfigProto(
    device_count=device_count,
    allow_soft_placement=True )) as sess:

    # === Create the model ===
    print("Creating %d bi-layers of %d units." % (FLAGS.num_layers, FLAGS.linear_size))
    model = create_model( sess, actions, FLAGS.batch_size )
    model.train_writer.add_graph( sess.graph )
    print("Model created")

    #=== This is the training loop ===
    step_time, loss, val_loss = 0.0, 0.0, 0.0
    current_step = 0 if FLAGS.load <= 0 else FLAGS.load + 1
    previous_losses = []

    step_time, loss = 0, 0
    current_epoch = 0
    log_every_n_batches = 100

    for _ in xrange( FLAGS.epochs ):
      current_epoch = current_epoch + 1

      # === Load training batches for one epoch ===
      encoder_inputs, decoder_outputs = model.get_all_batches( train_set_2d, train_set_3d, FLAGS.camera_frame, training=True )
      nbatches = len( encoder_inputs )
      print("There are {0} train batches".format( nbatches ))
      start_time, loss = time.time(), 0.

      # === Loop through all the training batches ===
      for i in range( nbatches ):

        if (i+1) % log_every_n_batches == 0:
          # Print progress every log_every_n_batches batches
          print("Working on epoch {0}, batch {1} / {2}... ".format( current_epoch, i+1, nbatches), end="" )

        enc_in, dec_out = encoder_inputs[i], decoder_outputs[i]
        step_loss, loss_summary, lr_summary, _ =  model.step( sess, enc_in, dec_out, FLAGS.dropout, isTraining=True )

        if (i+1) % log_every_n_batches == 0:
          # Log and print progress every log_every_n_batches batches
          model.train_writer.add_summary( loss_summary, current_step )
          model.train_writer.add_summary( lr_summary, current_step )
          step_time = (time.time() - start_time)
          start_time = time.time()
          print("done in {0:.2f} ms".format( 1000*step_time / log_every_n_batches ) )

        loss += step_loss
        current_step += 1
        # === end looping through training batches ===

      loss = loss / nbatches
      print("=============================\n"
            "Global step:         %d\n"
            "Learning rate:       %.2e\n"
            "Train loss avg:      %.4f\n"
            "=============================" % (model.global_step.eval(),
            model.learning_rate.eval(), loss) )
      # === End training for an epoch ===

      # === Testing after this epoch ===
      isTraining = False

      if FLAGS.evaluateActionWise:

        print("{0:=^12} {1:=^6}".format("Action", "mm")) # line of 30 equal signs

        cum_err = 0
        for action in actions:

          print("{0:<12} ".format(action), end="")
          # Get 2d and 3d testing data for this action
          action_test_set_2d = get_action_subset( test_set_2d, action )
          action_test_set_3d = get_action_subset( test_set_3d, action )
          encoder_inputs, decoder_outputs = model.get_all_batches( action_test_set_2d, action_test_set_3d, FLAGS.camera_frame, training=False)

          act_err, _, step_time, loss = evaluate_batches( sess, model,
            data_mean_3d, data_std_3d, dim_to_use_3d, dim_to_ignore_3d,
            data_mean_2d, data_std_2d, dim_to_use_2d, dim_to_ignore_2d,
            current_step, encoder_inputs, decoder_outputs )
          cum_err = cum_err + act_err

          print("{0:>6.2f}".format(act_err))

        summaries = sess.run( model.err_mm_summary, {model.err_mm: float(cum_err/float(len(actions)))} )
        model.test_writer.add_summary( summaries, current_step )
        print("{0:<12} {1:>6.2f}".format("Average", cum_err/float(len(actions) )))
        print("{0:=^19}".format(''))

      else:

        n_joints = 17 if not(FLAGS.predict_14) else 14
        encoder_inputs, decoder_outputs = model.get_all_batches( test_set_2d, test_set_3d, FLAGS.camera_frame, training=False)

        total_err, joint_err, step_time, loss = evaluate_batches( sess, model,
          data_mean_3d, data_std_3d, dim_to_use_3d, dim_to_ignore_3d,
          data_mean_2d, data_std_2d, dim_to_use_2d, dim_to_ignore_2d,
          current_step, encoder_inputs, decoder_outputs, current_epoch )

        print("=============================\n"
              "Step-time (ms):      %.4f\n"
              "Val loss avg:        %.4f\n"
              "Val error avg (mm):  %.2f\n"
              "=============================" % ( 1000*step_time, loss, total_err ))

        for i in range(n_joints):
          # 6 spaces, right-aligned, 5 decimal places
          print("Error in joint {0:02d} (mm): {1:>5.2f}".format(i+1, joint_err[i]))
        print("=============================")

        # Log the error to tensorboard
        summaries = sess.run( model.err_mm_summary, {model.err_mm: total_err} )
        model.test_writer.add_summary( summaries, current_step )

      # Save the model
      print( "Saving the model... ", end="" )
      start_time = time.time()
      model.saver.save(sess, os.path.join(train_dir, 'checkpoint'), global_step=current_step )
      print( "done in {0:.2f} ms".format(1000*(time.time() - start_time)) )

      # Reset global time and loss
      step_time, loss = 0, 0

      sys.stdout.flush()
コード例 #13
0
def train():
    """Train a linear model for 3d pose estimation"""

    actions = data_utils.define_actions(
        FLAGS.action)  #returns a list of corresponding actions

    number_of_actions = len(actions)

    # Load camera parameters
    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]  #1,5,6,7,8 for train, 9,11 for test
    rcams = cameras.load_cameras(FLAGS.cameras_path,
                                 SUBJECT_IDS)  #得到了关于camera的参数
    #print("相机的参数")

    # Load 3d data and load (or create) 2d projections
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)
    #print(data_mean_3d.shape[1],"平均值的大小")
    #assert 1==2,"debug结束"
    #train_set_3d是个dict,key为(S的编码,action,文件名)+pose(n,96)的大小
    # Read stacked hourglass 2D predictions if use_sh, otherwise use groundtruth 2D projections
    if FLAGS.use_sh:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
            actions, FLAGS.data_dir)
    else:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data(
            actions, FLAGS.data_dir, rcams)
    print("done reading and normalizing data", test_set_2d.shape)

    # Avoid using the GPU if requested
    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    with tf.Session(config=tf.ConfigProto(device_count=device_count,
                                          allow_soft_placement=True)) as sess:

        # === Create the model ===
        print("Creating %d bi-layers of %d units." %
              (FLAGS.num_layers,
               FLAGS.linear_size))  #打印出来的是Creating 2 bi-layers of 1024 units.
        model = create_model(sess, actions,
                             FLAGS.batch_size)  #FLAGS的batch_size是64
        model.train_writer.add_graph(sess.graph)  #将图添加到tensorboard中
        print("Model created")

        #=== This is the training loop ===
        step_time, loss, val_loss = 0.0, 0.0, 0.0
        current_step = 0 if FLAGS.load <= 0 else FLAGS.load + 1  #之后需要载入checkpoint

        previous_losses = []

        step_time, loss = 0, 0
        current_epoch = 0
        log_every_n_batches = 100  #每100次打印一下

        for _ in xrange(FLAGS.epochs):  #与range类似但也有不同之处
            current_epoch = current_epoch + 1

            # === Load training batches for one epoch === 在这里输入和输出的还是32和48为的
            encoder_inputs, decoder_outputs = model.get_all_batches(
                train_set_2d, train_set_3d, FLAGS.camera_frame, training=True)
            #按照batch的大小对输入和输出进行切片,切成[array(n1,32/48),array(n2,32/48),...,...]

            nbatches = len(encoder_inputs)
            print("There are {0} train batches".format(
                nbatches))  #24371个branches
            start_time, loss = time.time(), 0.

            # === Loop through all the training batches ===
            for i in range(nbatches):

                if (i + 1) % log_every_n_batches == 0:
                    # Print progress every log_every_n_batches batches
                    print("Working on epoch {0}, batch {1} / {2}... ".format(
                        current_epoch, i + 1, nbatches),
                          end="")

                enc_in, dec_out = encoder_inputs[i], decoder_outputs[i]
                #print(enc_in.shape,dec_out.shape)  (64,32)和(64,48)

                #将输入值输入到model模型中,
                step_loss, loss_summary, lr_summary, _ = model.step(
                    sess, enc_in, dec_out, FLAGS.dropout, isTraining=True)

                if (i + 1) % log_every_n_batches == 0:
                    # Log and print progress every log_every_n_batches batches 每100次就将结果写到tensorboard中去
                    model.train_writer.add_summary(loss_summary, current_step)
                    model.train_writer.add_summary(lr_summary, current_step)
                    step_time = (time.time() - start_time)
                    start_time = time.time()
                    print("done in {0:.2f} ms".format(1000 * step_time /
                                                      log_every_n_batches))

                loss += step_loss
                current_step += 1
                # === end looping through training batches ===

            loss = loss / nbatches
            print("=============================\n"
                  "Global step:         %d\n"
                  "Learning rate:       %.2e\n"
                  "Train loss avg:      %.4f\n"
                  "=============================" %
                  (model.global_step.eval(), model.learning_rate.eval(), loss))
            # === End training for an epoch ===

            # === Testing after this epoch ===
            isTraining = False

            if FLAGS.evaluateActionWise:

                print("{0:=^12} {1:=^6}".format(
                    "Action",
                    "mm"))  # line of 30 equal signs  即为====Action====mm

                cum_err = 0
                for action in actions:

                    print("{0:<12} ".format(action), end="")
                    # Get 2d and 3d testing data for this action 并将他们按照batch的大小切割好(不需要训练的话,就不需要随机排列了
                    action_test_set_2d = get_action_subset(test_set_2d, action)
                    action_test_set_3d = get_action_subset(test_set_3d, action)
                    encoder_inputs, decoder_outputs = model.get_all_batches(
                        action_test_set_2d,
                        action_test_set_3d,
                        FLAGS.camera_frame,
                        training=False)

                    #evaluate_batches要好好看一下
                    act_err, _, step_time, loss = evaluate_batches(
                        sess, model, data_mean_3d, data_std_3d, dim_to_use_3d,
                        dim_to_ignore_3d, data_mean_2d, data_std_2d,
                        dim_to_use_2d, dim_to_ignore_2d, current_step,
                        encoder_inputs, decoder_outputs)
                    cum_err = cum_err + act_err

                    print("{0:>6.2f}".format(act_err))

                summaries = sess.run(
                    model.err_mm_summary,
                    {model.err_mm: float(cum_err / float(len(actions)))})
                model.test_writer.add_summary(summaries, current_step)
                print("{0:<12} {1:>6.2f}".format("Average", cum_err /
                                                 float(len(actions))))
                print("{0:=^19}".format(''))

            else:

                n_joints = 17 if not (FLAGS.predict_14) else 14
                encoder_inputs, decoder_outputs = model.get_all_batches(
                    test_set_2d,
                    test_set_3d,
                    FLAGS.camera_frame,
                    training=False)

                total_err, joint_err, step_time, loss = evaluate_batches(
                    sess, model, data_mean_3d, data_std_3d, dim_to_use_3d,
                    dim_to_ignore_3d, data_mean_2d, data_std_2d, dim_to_use_2d,
                    dim_to_ignore_2d, current_step, encoder_inputs,
                    decoder_outputs, current_epoch)

                print("=============================\n"
                      "Step-time (ms):      %.4f\n"
                      "Val loss avg:        %.4f\n"
                      "Val error avg (mm):  %.2f\n"
                      "=============================" %
                      (1000 * step_time, loss, total_err))

                for i in range(n_joints):
                    # 6 spaces, right-aligned, 5 decimal places
                    print("Error in joint {0:02d} (mm): {1:>5.2f}".format(
                        i + 1, joint_err[i]))
                print("=============================")

                # Log the error to tensorboard
                summaries = sess.run(model.err_mm_summary,
                                     {model.err_mm: total_err})
                model.test_writer.add_summary(summaries, current_step)

            # Save the model
            print("Saving the model... ", end="")
            start_time = time.time()
            model.saver.save(sess,
                             os.path.join(train_dir, 'checkpoint'),
                             global_step=current_step)
            print("done in {0:.2f} ms".format(1000 *
                                              (time.time() - start_time)))

            # Reset global time and loss
            step_time, loss = 0, 0

            sys.stdout.flush()
コード例 #14
0
def sample():
  """Get samples from a model and visualize them"""

  actions = data_utils.define_actions( FLAGS.action )

  # Load camera parameters
  SUBJECT_IDS = [1,5,6,7,8,9,11]
  rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

  # Load 3d data and load (or create) 2d projections
  train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
    actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14 )

  if FLAGS.use_sh:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, FLAGS.data_dir)
  else:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data( actions, FLAGS.data_dir, rcams )
  print( "done reading and normalizing data." )

  device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
  with tf.Session(config=tf.ConfigProto( device_count = device_count )) as sess:
    # === Create the model ===
    print("Creating %d layers of %d units." % (FLAGS.num_layers, FLAGS.linear_size))
    batch_size = 128
    model = create_model(sess, actions, batch_size)
    print("Model loaded")

    for key2d in test_set_2d.keys():

      (subj, b, fname) = key2d
      print( "Subject: {}, action: {}, fname: {}".format(subj, b, fname) )

      # keys should be the same if 3d is in camera coordinates
      key3d = key2d if FLAGS.camera_frame else (subj, b, '{0}.h5'.format(fname.split('.')[0]))
      key3d = (subj, b, fname[:-3]) if (fname.endswith('-sh')) and FLAGS.camera_frame else key3d

      enc_in  = test_set_2d[ key2d ]
      n2d, _ = enc_in.shape
      dec_out = test_set_3d[ key3d ]
      n3d, _ = dec_out.shape
      assert n2d == n3d

      # Split into about-same-size batches
      enc_in   = np.array_split( enc_in,  n2d // batch_size )
      dec_out  = np.array_split( dec_out, n3d // batch_size )
      all_poses_3d = []

      for bidx in range( len(enc_in) ):

        # Dropout probability 0 (keep probability 1) for sampling
        dp = 1.0
        _, _, poses3d = model.step(sess, enc_in[bidx], dec_out[bidx], dp, isTraining=False)

        # denormalize
        enc_in[bidx]  = data_utils.unNormalizeData(  enc_in[bidx], data_mean_2d, data_std_2d, dim_to_ignore_2d )
        dec_out[bidx] = data_utils.unNormalizeData( dec_out[bidx], data_mean_3d, data_std_3d, dim_to_ignore_3d )
        poses3d = data_utils.unNormalizeData( poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d )
        all_poses_3d.append( poses3d )

      # Put all the poses together
      enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, all_poses_3d] )

      # Convert back to world coordinates
      if FLAGS.camera_frame:
        N_CAMERAS = 4
        N_JOINTS_H36M = 32

        # Add global position back
        dec_out = dec_out + np.tile( test_root_positions[ key3d ], [1,N_JOINTS_H36M] )

        # Load the appropriate camera
        subj, _, sname = key3d

        cname = sname.split('.')[1] # <-- camera name
        scams = {(subj,c+1): rcams[(subj,c+1)] for c in range(N_CAMERAS)} # cams of this subject
        scam_idx = [scams[(subj,c+1)][-1] for c in range(N_CAMERAS)].index( cname ) # index of camera used
        the_cam  = scams[(subj, scam_idx+1)] # <-- the camera used
        R, T, f, c, k, p, name = the_cam
        assert name == cname

        def cam2world_centered(data_3d_camframe):
          data_3d_worldframe = cameras.camera_to_world_frame(data_3d_camframe.reshape((-1, 3)), R, T)
          data_3d_worldframe = data_3d_worldframe.reshape((-1, N_JOINTS_H36M*3))
          # subtract root translation
          return data_3d_worldframe - np.tile( data_3d_worldframe[:,:3], (1,N_JOINTS_H36M) )

        # Apply inverse rotation and translation
        dec_out = cam2world_centered(dec_out)
        poses3d = cam2world_centered(poses3d)

  # Grab a random batch to visualize
  enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, poses3d] )
  idx = np.random.permutation( enc_in.shape[0] )
  enc_in, dec_out, poses3d = enc_in[idx, :], dec_out[idx, :], poses3d[idx, :]

  # Visualize random samples
  import matplotlib.gridspec as gridspec

  # 1080p	= 1,920 x 1,080
  fig = plt.figure( figsize=(19.2, 10.8) )

  gs1 = gridspec.GridSpec(5, 9) # 5 rows, 9 columns
  gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes.
  plt.axis('off')

  subplot_idx, exidx = 1, 1
  nsamples = 15
  for i in np.arange( nsamples ):

    # Plot 2d pose
    ax1 = plt.subplot(gs1[subplot_idx-1])
    p2d = enc_in[exidx,:]
    viz.show2Dpose( p2d, ax1 )
    ax1.invert_yaxis()

    # Plot 3d gt
    ax2 = plt.subplot(gs1[subplot_idx], projection='3d')
    p3d = dec_out[exidx,:]
    viz.show3Dpose( p3d, ax2 )

    # Plot 3d predictions
    ax3 = plt.subplot(gs1[subplot_idx+1], projection='3d')
    p3d = poses3d[exidx,:]
    viz.show3Dpose( p3d, ax3, lcolor="#9b59b6", rcolor="#2ecc71" )

    exidx = exidx + 1
    subplot_idx = subplot_idx + 3

  plt.show()
コード例 #15
0
def predict(convert_to_world):
    """
  Run the model and predict pose data

  convert_to_world is a flag indicating whether to convert the data back to 
  world coordinates from the camera frame.
  """

    actions = data_utils.define_actions(FLAGS.action)

    # Load camera parameters
    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

    # Load 3d data and load (or create) 2d projections
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

    if FLAGS.use_sh:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
            actions, FLAGS.data_dir)
    else:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data(
            actions, FLAGS.data_dir, rcams)
    print("done reading and normalizing data.")

    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    with tf.Session(config=tf.ConfigProto(device_count=device_count)) as sess:
        # === Create the model ===
        print("Creating %d layers of %d units." %
              (FLAGS.num_layers, FLAGS.linear_size))
        batch_size = 128
        model = create_model(sess, actions, batch_size)
        print("Model loaded")

        for key2d in test_set_2d.keys():

            (subj, b, fname) = key2d
            print("Subject: {}, action: {}, fname: {}".format(subj, b, fname))

            # keys should be the same if 3d is in camera coordinates
            key3d = key2d if FLAGS.camera_frame else (subj, b, '{0}.h5'.format(
                fname.split('.')[0]))
            key3d = (subj, b, fname[:-3]) if (
                fname.endswith('-sh')) and FLAGS.camera_frame else key3d

            enc_in = test_set_2d[key2d]
            n2d, _ = enc_in.shape
            dec_out = test_set_3d[key3d]
            n3d, _ = dec_out.shape
            assert n2d == n3d

            # Generate the loss pairs
            loss_pairs = None
            if model.num_loss_pairs:
                num_pts = int(model.HUMAN_3D_SIZE / 3)
                pairs = np.asarray([(i, j) for i in range(num_pts)
                                    for j in range(num_pts) if i < j])
                pair_idxs = [
                    np.random.choice(len(pairs),
                                     model.num_loss_pairs,
                                     replace=False) for _ in range(n3d)
                ]
                loss_pairs = np.take(pairs, pair_idxs, axis=0)
                loss_pairs = np.array_split(loss_pairs, n2d // batch_size)

            # Split into about-same-size batches
            enc_in = np.array_split(enc_in, n2d // batch_size)
            dec_out = np.array_split(dec_out, n3d // batch_size)
            all_poses_3d = []

            # enc_in_modified = []

            for bidx in range(len(enc_in)):

                # Dropout probability 0 (keep probability 1) for sampling
                dp = 1.0
                if model.num_loss_pairs:
                    _, _, poses3d = model.step(sess,
                                               enc_in[bidx],
                                               dec_out[bidx],
                                               dp,
                                               loss_pairs=loss_pairs[bidx],
                                               isTraining=False)
                else:
                    _, _, poses3d = model.step(sess,
                                               enc_in[bidx],
                                               dec_out[bidx],
                                               dp,
                                               isTraining=False)

                # poses3dnew = []
                # for e in enc_in[bidx]:
                #   poses3dnew.append(np.insert(e, range(1, len(e)+1, 2), poses3d[1::3]))
                # poses3d = poses3dnew
                # print (bidx)
                # print (len(enc_in[bidx]))
                # print (enc_in[bidx])
                # print (data_mean_2d)
                # print (data_mean_3d)
                # data_mean_2d_modified = np.delete(data_mean_3d, np.arange(2, data_mean_3d.size, 3))
                # data_std_2d_modified = np.delete(data_std_3d, np.arange(2, data_std_3d.size, 3))

                # denormalize
                # enc_in_modified.append(data_utils.unNormalizeData(  enc_in[bidx], data_mean_2d_modified, data_std_2d_modified, dim_to_ignore_2d ))
                enc_in[bidx] = data_utils.unNormalizeData(
                    enc_in[bidx], data_mean_2d, data_std_2d, dim_to_ignore_2d)
                dec_out[bidx] = data_utils.unNormalizeData(
                    dec_out[bidx], data_mean_3d, data_std_3d, dim_to_ignore_3d)
                poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d,
                                                     data_std_3d,
                                                     dim_to_ignore_3d)
                all_poses_3d.append(poses3d)

                # print (len(enc_in[bidx]))
                # print (len(poses3d))
            # print (len(enc_in[0]))
            # print (len(poses3d[0]))

            # Put all the poses together
            # enc_in_modified = np.vstack(enc_in_modified)
            enc_in, dec_out, poses3d = map(np.vstack,
                                           [enc_in, dec_out, all_poses_3d])

            # print (len(enc_in[0]))
            # print (len(poses3d[0]))
            # print (enc_in.shape)
            # print (poses3d.shape)

            # poses3dnew = []
            # for p, e in zip(poses3d, enc_in_modified):
            #   poses3dnew.append(np.insert(e, range(1, len(e)+1, 2), p[1::3]))
            # poses3d = np.array(poses3dnew)

            if convert_to_world:
                # Convert back to world coordinates
                if FLAGS.camera_frame:
                    N_CAMERAS = 4
                    N_JOINTS_H36M = 32

                    # Add global position back
                    dec_out = dec_out + np.tile(test_root_positions[key3d],
                                                [1, N_JOINTS_H36M])

                    # Load the appropriate camera
                    subj, _, sname = key3d

                    cname = sname.split('.')[1]  # <-- camera name
                    scams = {(subj, c + 1): rcams[(subj, c + 1)]
                             for c in range(N_CAMERAS)}  # cams of this subject
                    scam_idx = [
                        scams[(subj, c + 1)][-1] for c in range(N_CAMERAS)
                    ].index(cname)  # index of camera used
                    the_cam = scams[(subj,
                                     scam_idx + 1)]  # <-- the camera used
                    R, T, f, c, k, p, name = the_cam
                    assert name == cname

                    def cam2world_centered(data_3d_camframe):
                        data_3d_worldframe = cameras.camera_to_world_frame(
                            data_3d_camframe.reshape((-1, 3)), R, T)
                        data_3d_worldframe = data_3d_worldframe.reshape(
                            (-1, N_JOINTS_H36M * 3))
                        # subtract root translation
                        return data_3d_worldframe - np.tile(
                            data_3d_worldframe[:, :3], (1, N_JOINTS_H36M))

                    # Apply inverse rotation and translation
                    dec_out = cam2world_centered(dec_out)
                    poses3d = cam2world_centered(poses3d)

    poses3dnew = dec_out.copy()
    poses3dnew[:, 1::3] = poses3d[:, 1::3]
    poses3d = poses3dnew
    return enc_in, dec_out, poses3d
コード例 #16
0
# Load data
data_dir = './data/h36m/'
camera_frame = True
predict_14 = False
# Load 3d data and load (or create) 2d projections
train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
    actions, data_dir, camera_frame, rcams, predict_14 )

# Read stacked hourglass 2D predictions if use_sh, otherwise use groundtruth 2D projections
#use stacked hourgalss
use_sh = False
if use_sh:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, data_dir)
else:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data( actions, data_dir, rcams )
print( "done reading and normalizing data." )

stat_3d = {}
stat_3d['mean'] = data_mean_3d
stat_3d['std'] = data_std_3d
stat_3d['dim_use'] = dim_to_use_3d

# ============================
#   Define Train/Test Methods
# ============================

def train(train_loader, model, criterion, optimizer,
          lr_init=None, lr_now=None, glob_step=None, lr_decay=None, gamma=None,
          max_norm=True):
    losses = utils.AverageMeter()
コード例 #17
0
def main(_):
    smoothed = read_openpose_json_mydata(json_file=FLAGS.json)
    plt.figure(2)
    smooth_curves_plot = show_anim_curves(smoothed, plt)
    # return
    pngName = 'gif_output/smooth_plot.png'
    smooth_curves_plot.savefig(pngName)
    logger.info('writing gif_output/smooth_plot.png')

    if FLAGS.interpolation:
        logger.info("start interpolation")

        framerange = len(smoothed.keys())
        joint_rows = 36
        array = np.concatenate(list(smoothed.values()))
        array_reshaped = np.reshape(array, (framerange, joint_rows))

        multiplier = FLAGS.multiplier
        multiplier_inv = 1 / multiplier

        out_array = np.array([])
        for row in range(joint_rows):
            x = []
            for frame in range(framerange):
                x.append(array_reshaped[frame, row])

            frame = range(framerange)
            frame_resampled = np.arange(0, framerange, multiplier)
            spl = UnivariateSpline(frame, x, k=3)
            # relative smooth factor based on jnt anim curve
            min_x, max_x = min(x), max(x)
            smooth_fac = max_x - min_x
            smooth_resamp = 125
            smooth_fac = smooth_fac * smooth_resamp
            spl.set_smoothing_factor(float(smooth_fac))
            xnew = spl(frame_resampled)

            out_array = np.append(out_array, xnew)

        logger.info(
            "done interpolating. reshaping {0} frames,  please wait!!".format(
                framerange))

        a = np.array([])
        for frame in range(int(framerange * multiplier_inv)):
            jnt_array = []
            for jnt in range(joint_rows):
                jnt_array.append(
                    out_array[jnt * int(framerange * multiplier_inv) + frame])
            a = np.append(a, jnt_array)

        a = np.reshape(a, (int(framerange * multiplier_inv), joint_rows))
        out_array = a

        interpolate_smoothed = {}
        for frame in range(int(framerange * multiplier_inv)):
            interpolate_smoothed[frame] = list(out_array[frame])

        plt.figure(3)
        smoothed = interpolate_smoothed
        interpolate_curves_plot = show_anim_curves(smoothed, plt)
        pngName = 'gif_output/interpolate_{0}.png'.format(smooth_resamp)
        interpolate_curves_plot.savefig(pngName)
        logger.info('writing gif_output/interpolate_plot.png')

    enc_in = np.zeros((1, 64))
    enc_in[0] = [0 for i in range(64)]

    actions = data_utils.define_actions(FLAGS.action)

    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)
    # train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
    #     actions, FLAGS.data_dir)
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data(
        actions, FLAGS.data_dir, rcams)
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

    device_count = {"GPU": 1}
    png_lib = []
    before_pose = None
    with tf.Session(config=tf.ConfigProto(device_count=device_count,
                                          allow_soft_placement=True)) as sess:
        # plt.figure(3)
        batch_size = 128
        model = create_model(sess, actions, batch_size)
        iter_range = len(smoothed.keys())
        export_units = {}
        twod_export_units = {}
        for n, (frame, xy) in enumerate(smoothed.items()):
            logger.info("calc frame {0}/{1}".format(frame, iter_range))
            # map list into np array
            joints_array = np.zeros((1, 36))
            joints_array[0] = [0 for i in range(36)]
            for o in range(len(joints_array[0])):
                # feed array with xy array
                joints_array[0][o] = float(xy[o])

            twod_export_units[frame] = {}
            for abs_b, __n in enumerate(range(0, len(xy), 2)):
                twod_export_units[frame][abs_b] = {
                    "translate": [xy[__n], xy[__n + 1]]
                }

            _data = joints_array[0]
            # mapping all body parts or 3d-pose-baseline format
            for i in range(len(order)):
                for j in range(2):
                    # create encoder input
                    enc_in[0][order[i] * 2 + j] = _data[i * 2 + j]
            for j in range(2):
                # Hip
                enc_in[0][0 * 2 + j] = (enc_in[0][1 * 2 + j] +
                                        enc_in[0][6 * 2 + j]) / 2
                # Neck/Nose
                enc_in[0][14 * 2 + j] = (enc_in[0][15 * 2 + j] +
                                         enc_in[0][12 * 2 + j]) / 2
                # Thorax
                enc_in[0][13 * 2 +
                          j] = 2 * enc_in[0][12 * 2 + j] - enc_in[0][14 * 2 +
                                                                     j]

            # set spine
            spine_x = enc_in[0][24]
            spine_y = enc_in[0][25]

            enc_in = enc_in[:, dim_to_use_2d]
            mu = data_mean_2d[dim_to_use_2d]
            stddev = data_std_2d[dim_to_use_2d]
            enc_in = np.divide((enc_in - mu), stddev)

            dp = 1.0
            # dec_out = np.zeros((1, 48))
            # dec_out[0] = [0 for i in range(48)]

            dec_out = np.zeros((1, 36))
            dec_out[0] = [0 for i in range(36)]

            _, _, poses3d = model.step(sess,
                                       enc_in,
                                       dec_out,
                                       dp,
                                       isTraining=False)
            all_poses_3d = []
            enc_in = data_utils.unNormalizeData(enc_in, data_mean_2d,
                                                data_std_2d, dim_to_ignore_2d)
            poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d,
                                                 data_std_3d, dim_to_ignore_3d)
            gs1 = gridspec.GridSpec(1, 1)
            gs1.update(wspace=-0.00,
                       hspace=0.05)  # set the spacing between axes.
            plt.axis('off')
            all_poses_3d.append(poses3d)
            enc_in, poses3d = map(np.vstack, [enc_in, all_poses_3d])
            subplot_idx, exidx = 1, 1
            _max = 0
            _min = 10000

            for i in range(poses3d.shape[0]):
                for j in range(32):
                    tmp = poses3d[i][j * 3 + 2]
                    poses3d[i][j * 3 + 2] = poses3d[i][j * 3 + 1]
                    poses3d[i][j * 3 + 1] = tmp
                    if poses3d[i][j * 3 + 2] > _max:
                        _max = poses3d[i][j * 3 + 2]
                    if poses3d[i][j * 3 + 2] < _min:
                        _min = poses3d[i][j * 3 + 2]

            for i in range(poses3d.shape[0]):
                for j in range(32):
                    poses3d[i][j * 3 + 2] = _max - poses3d[i][j * 3 + 2] + _min
                    poses3d[i][j * 3] += (spine_x - 630)
                    poses3d[i][j * 3 + 2] += (500 - spine_y)

            # Plot 3d predictions
            ax = plt.subplot(gs1[subplot_idx - 1], projection='3d')
            ax.view_init(18, -70)

            # if FLAGS.cache_on_fail:
            #     if np.min(poses3d) < -1000:
            #         poses3d = before_pose

            p3d = poses3d
            logger.info("frame score {0}".format(np.min(poses3d)))
            x, y, z = [[] for _ in range(3)]
            if not poses3d is None:
                to_export = poses3d.tolist()[0]
            else:
                to_export = [0.0 for _ in range(96)]
            logger.info("export {0}".format(to_export))
            for o in range(0, len(to_export), 3):
                x.append(to_export[o])
                y.append(to_export[o + 1])
                z.append(to_export[o + 2])

            export_units[frame] = {}
            for jnt_index, (_x, _y, _z) in enumerate(zip(x, y, z)):
                export_units[frame][jnt_index] = {"translate": [_x, _y, _z]}
                viz.show3Dpose(p3d, ax, lcolor="#9b59b6", rcolor="#2ecc71")

            pngName = 'png/pose_frame_{0}.png'.format(str(frame).zfill(12))
            plt.savefig(pngName)
            if FLAGS.write_gif:
                png_lib.append(imageio.imread(pngName))

            # if FLAGS.cache_on_fail:
            #     before_pose = poses3d

    if FLAGS.write_gif:
        if FLAGS.interpolation:
            # take every frame on gif_fps * multiplier_inv
            png_lib = np.array([
                png_lib[png_image]
                for png_image in range(0, len(png_lib), int(multiplier_inv))
            ])
        logger.info("creating Gif gif_output/animation.gif, please Wait!")
        imageio.mimsave('gif_output/animation.gif', png_lib, fps=FLAGS.gif_fps)

    _out_file = os.path.join(os.path.dirname(os.path.dirname(__file__)),
                             'maya/3d_data.json')
    twod_out_file = os.path.join(os.path.dirname(os.path.dirname(__file__)),
                                 'maya/2d_data.json')
    with open(_out_file, 'w') as outfile:
        logger.info("exported maya json to {0}".format(_out_file))
        json.dump(export_units, outfile)
    with open(twod_out_file, 'w') as outfile:
        logger.info("exported maya json to {0}".format(twod_out_file))
        json.dump(twod_export_units, outfile)

    logger.info("Done!".format(pngName))