コード例 #1
0
ファイル: modelLstm.py プロジェクト: zhangzhaoyin/text_cl
 def predict(self, sess, X, y=None):
     """Make predictions from the provided model."""
     losses = []
     results = []
     if np.any(y):
         data = data_utils.data_iterator(X,
                                         y,
                                         batch_size=self.config.batch_size,
                                         label_size=self.config.label_size,
                                         shuffle=False)
     else:
         data = data_utils.data_iterator(X,
                                         batch_size=self.config.batch_size,
                                         label_size=self.config.label_size,
                                         shuffle=False)
     for step, (x, y) in enumerate(data):
         feed = self.create_feed_dict(input_batch=x, )
         if np.any(y):
             feed[self.labels_placeholder] = y
             loss, preds = sess.run([self.loss, self.predictions],
                                    feed_dict=feed)
             losses.append(loss)
         else:
             preds = sess.run(self.predictions, feed_dict=feed)
         predicted_indices = preds.argmax(axis=1)
         results.extend(predicted_indices)
     return np.mean(losses), results
コード例 #2
0
ファイル: word_seg.py プロジェクト: tilneyyang/word_segment
def run_epoch(session, m, data, eval_op, verbose=False):
    """Runs the model on the given data."""
    epoch_size = len(data) // m.batch_size
    start_time = time.time()
    costs = 0.0
    iters = 0
    state = m.initial_state.eval()
    for step, (x, y) in enumerate(data_utils.data_iterator(data, m.batch_size,
                                                      m.num_steps)):
        cost, state, _ = session.run([m.cost, m.final_state, eval_op],
                                     {m.input_data: x,
                                      m.targets: y,
                                      m.initial_state: state})
        costs += cost
        iters += m.num_steps
        if verbose and step % 1 == 0:
            print("current step: %s, %.3f perplexity: %.3f speed: %.0f wps" %
                  (m.global_step.eval(), step * 1.0 / epoch_size, np.exp(costs / iters),
                   iters * m.batch_size / (time.time() - start_time)))

            if m.is_training:
                print ('dumping model..')
                m.saver.save(session, os.path.join(FLAGS.train_dir, "word_seg.ckpt"), global_step=m.global_step)

    return np.exp(costs / iters)
コード例 #3
0
def run_epoch(char_model, session, train_op, loss, raw_data,
              id_word_map, char_id_map, batch_size, learning_rate):
    epoch_size = (len(raw_data) / batch_size - 1) / char_model.seq_len
    total_cost = 0.0
    total_len = 0.0
    for i, (X_batch, y_batch) in enumerate(
        data_utils.data_iterator(raw_data, batch_size, char_model.seq_len)):
        X_char_batch = data_utils.word_ids_to_char_ids(
            X_batch, id_word_map, char_id_map, FLAGS.max_word_len)
        if char_model.is_training:
            _, cost = session.run(
                [train_op, loss],
                feed_dict={
                    char_model.input_X: X_char_batch,
                    char_model.input_y: y_batch,
                    char_model.learning_rate: learning_rate})
        else:
            cost = session.run(
                loss,
                feed_dict={
                    char_model.input_X: X_char_batch,
                    char_model.input_y: y_batch})
        if i % (epoch_size / 10) == 10:
            print("Step %d, cost: %f" % (i, cost))
        total_cost += cost
        total_len += char_model.seq_len
    ppl = calc_ppl(total_cost, total_len)
    return ppl
コード例 #4
0
ファイル: modelLstm.py プロジェクト: zhangzhaoyin/text_cl
    def run_epoch(self,
                  session,
                  input_data,
                  input_labels,
                  shuffle=True,
                  verbose=True,
                  train_op=None):
        """Runs an epoch of training.
            Trains the model for one-epoch.
            Args:
              sess: tf.Session() object
              input_data: np.ndarray of shape (n_samples, n_features)
              input_labels: np.ndarray of shape (n_samples, n_classes)
            Returns:
              average_loss: scalar. Average minibatch loss of model on epoch.
            """

        # And then after everything is built, start the training loop.

        dp = self.config.dropout
        state = self.initial_state.eval()
        total_loss = []
        total_correct_examples = 0
        total_processed_examples = 0
        total_steps = len(input_data) / self.config.batch_size

        tempData = data_utils.data_iterator(input_data,
                                            input_labels,
                                            batch_size=self.config.batch_size,
                                            label_size=self.config.n_classes,
                                            shuffle=shuffle)

        for step, (input_batch, label_batch) in enumerate(tempData):

            feed_dict = self.create_feed_dict(input_batch,
                                              label_batch,
                                              state,
                                              dropout=dp)

            loss, _ = session.run([self.loss, self.train_op],
                                  feed_dict=feed_dict)
            total_loss.append(loss)

        return np.mean(total_loss)
コード例 #5
0
ファイル: train_ops.py プロジェクト: chagge/attentive_lm
def run_eval(model, session, data, batch_size=1, num_steps=120, valid=True):
    """

    Parameters
    ----------
    model
    session
    data
    batch_size

    Returns
    -------

    """
    if valid:
        eval_type = "Valid"
        print("\nValidating:\n")
    else:
        eval_type = "Test"
        print("\nTesting:\n")
    costs = 0.0
    iters = 0
    total_words = 0

    for step, (x, y, w, words) in enumerate(data_utils.data_iterator(data, batch_size, num_steps)):

        state = model.initial_state_train.eval()

        cost, _ = model.valid_step(session=session, lm_inputs=x, lm_targets=y, mask=w, state=state, dropout_rate=0.0)

        total_words += words
        costs += cost
        iters = step + 1
    eval = costs / iters
    ppxs = numpy.exp(eval)

    if ppxs > 10000.0:
        print("%s PPX after epoch #%d: > 10000.0 - # words %d\n" % (eval_type, model.epoch.eval(), total_words))
    else:
        print("%s PPX after epoch #%d: %f - # words %d\n" % (eval_type, model.epoch.eval(), ppxs, total_words))

    return eval, ppxs, total_words
コード例 #6
0
ファイル: word_seg.py プロジェクト: ych-tmumu/word_segment
def run_epoch(session, m, data, eval_op, verbose=False):
    """Runs the model on the given data."""
    epoch_size = ((len(data) // m.batch_size) - 1) // m.num_steps
    start_time = time.time()
    costs = 0.0
    iters = 0
    state = m.initial_state.eval()
    for step, (x, y) in enumerate(
            data_utils.data_iterator(data, m.batch_size, m.num_steps)):
        cost, state, _ = session.run([m.cost, m.final_state, eval_op], {
            m.input_data: x,
            m.targets: y,
            m.initial_state: state
        })
        costs += cost
        iters += m.num_steps

        if verbose and step % (epoch_size // 10) == 10:
            print("%.3f perplexity: %.3f speed: %.0f wps" %
                  (step * 1.0 / epoch_size, np.exp(costs / iters),
                   iters * m.batch_size / (time.time() - start_time)))

    return np.exp(costs / iters)
コード例 #7
0
ファイル: train_ops.py プロジェクト: chagge/attentive_lm
def train_lm(FLAGS=None):

    assert FLAGS is not None

    if not os.path.exists(FLAGS.train_dir):
        os.makedirs(FLAGS.train_dir)

    if not os.path.exists(FLAGS.best_models_dir):
        os.makedirs(FLAGS.best_models_dir)

    print('Preparing data in %s' % FLAGS.data_dir)
    src_train, src_dev, src_test = data_utils.prepare_lm_data(FLAGS)

    with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) as sess:

        nan_detected = False

        print('Creating layers.')
        initializer = tf.random_uniform_initializer(-FLAGS.init_scale, FLAGS.init_scale)
        model = build_ops.create_lm_model(sess, is_training=True, FLAGS=FLAGS, initializer=initializer)

        print('Reading development and training data (limit: %d).' % FLAGS.max_train_data_size)

        train_data = data_utils.read_lm_data(src_train, max_size=FLAGS.max_train_data_size, FLAGS=FLAGS)
        train_total_size = len(train_data)
        m = max([len(s) for s in train_data])
        a = float(sum([len(s) for s in train_data])) / len(train_data)
        print("Train max length : %d - (Avg. %.2f)" % (m, a))

        valid_data = data_utils.read_lm_data(src_dev, FLAGS=FLAGS)
        m = max([len(s) for s in valid_data])
        print("Valid max length : %d" % m)

        test_data = data_utils.read_lm_data(src_test, FLAGS=FLAGS)
        m = max([len(s) for s in test_data])
        print("Test max length : %d" % m)

        epoch_size = train_total_size / FLAGS.batch_size
        print("Total number of updates per epoch: %d" % epoch_size)

        print("Optimization started...")

        total_loss = model.current_loss.eval()
        while model.epoch.eval() < FLAGS.max_epochs:

            saved = False
            n_target_words = 0
            state_ = model.initial_state_train.eval()

            for step, (x, y, w, words) in enumerate(data_utils.data_iterator(train_data, model.batch_size, model.num_steps)):

                start_time = time.time()

                if FLAGS.reset_state:
                    state = model.initial_state_train.eval()
                else:
                    state = state_

                n_target_words += words
                loss, state_ = model.train_step(session=sess, lm_inputs=x, lm_targets=y, mask=w,
                                                state=state, dropout_rate=FLAGS.dropout_rate)

                if numpy.isnan(loss) or numpy.isinf(loss):
                    print 'NaN detected'
                    nan_detected = True
                    break

                total_loss += loss
                current_global_step = model.global_step.eval()

                if current_global_step % FLAGS.steps_verbosity == 0:
                    end_time = time.time()
                    total_time = end_time - start_time
                    target_words_speed = n_target_words / total_time
                    n_target_words = 0
                    avg_step_time = total_time / FLAGS.steps_verbosity

                    avg_loss = total_loss / current_global_step
                    ppx = numpy.exp(avg_loss)
                    sess.run(model.current_loss.assign(total_loss))
                    sess.run(model.current_ppx.assign(ppx))

                    if ppx > 1000.0:

                        print('epoch %d global step %d lr.rate %.4f avg.loss %.4f avg. ppx > 1000.0 avg. step time %.2f - avg. %.2f words/sec' %
                              (model.epoch.eval(), current_global_step, model.learning_rate.eval(),
                               avg_loss, avg_step_time, target_words_speed))
                    else:
                        print('epoch %d global step %d lr.rate %.4f avg.loss %.4f avg. ppx %.4f avg. step time %.2f - avg. %.2f words/sec' %
                              (model.epoch.eval(), current_global_step, model.learning_rate.eval(),
                               avg_loss, ppx, avg_step_time, target_words_speed))

                if FLAGS.steps_per_checkpoint > 0:
                    if current_global_step % FLAGS.steps_per_checkpoint == 0:
                        # Save checkpoint
                        checkpoint_path = os.path.join(FLAGS.train_dir, FLAGS.model_name)
                        model.saver.save(sess, checkpoint_path, global_step=model.global_step)
                        saved = True

                if FLAGS.steps_per_validation > 0:

                    if current_global_step % FLAGS.steps_per_validation == 0:

                        valid_loss, valid_ppx, n_words = run_eval(
                            model=model, session=sess, data=valid_data,
                            batch_size=FLAGS.batch_size, num_steps=FLAGS.num_valid_steps
                        )

                        test_loss, test_ppx, n_words = run_eval(
                            model=model, session=sess, data=test_data,
                            batch_size=FLAGS.batch_size, num_steps=FLAGS.num_valid_steps, valid=False
                        )

                        should_stop = check_early_stop(model=model, session=sess, ppx=valid_ppx, flags=FLAGS)

                        if should_stop:
                            break

            ep = model.epoch.eval()
            print("Epoch %d finished... " % ep)

            should_stop = False

            # updating epoch number
            sess.run(model.epoch_update_op)
            ep_new = model.epoch.eval()

            if FLAGS.save_each_epoch:

                # Save checkpoint
                print("Saving current model...")
                checkpoint_path = os.path.join(FLAGS.train_dir, FLAGS.model_name)
                model.saver.save(sess, checkpoint_path, global_step=model.global_step)

            if FLAGS.eval_after_each_epoch:

                valid_loss, valid_ppx, n_words = run_eval(
                    model=model, session=sess, data=valid_data,
                    batch_size=FLAGS.batch_size, num_steps=FLAGS.num_valid_steps
                )
                best_ppx = model.best_eval_ppx.eval()

                with codecs.open(FLAGS.best_models_dir + FLAGS.model_name + ".txt", "a", encoding="utf-8") as f:
                    f.write("PPX after epoch #%d: %f (Current best PPX: %f)\n" % (ep - 1, valid_ppx, best_ppx))

                if FLAGS.test_after_each_epoch:

                    test_loss, test_ppx, n_words = run_eval(
                        model=model, session=sess, data=test_data,
                        batch_size=FLAGS.batch_size, num_steps=FLAGS.num_valid_steps,
                        valid=False
                    )

                    with codecs.open(FLAGS.best_models_dir + FLAGS.model_name + ".txt", "a", encoding="utf-8") as f:
                        f.write("PPX after epoch #%d: %f \n" % (ep - 1, test_ppx))

                if FLAGS.steps_per_validation == 0:
                    # if we are not validating after some steps, we validate after each epoch,
                    # therefore we must check the early stop here
                    should_stop = check_early_stop(model=model, session=sess, ppx=valid_ppx, flags=FLAGS)

            if ep + 1 >= FLAGS.max_epochs:
                if not saved:
                    # Save checkpoint
                    checkpoint_path = os.path.join(FLAGS.train_dir, FLAGS.model_name)
                    model.saver.save(sess, checkpoint_path, global_step=model.global_step)
                break

            if FLAGS.start_decay > 0:

                if FLAGS.stop_decay > 0:

                    if FLAGS.start_decay <= model.epoch.eval() <= FLAGS.stop_decay:
                        sess.run(model.learning_rate_decay_op)

                else:

                    if FLAGS.start_decay <= model.epoch.eval():
                        sess.run(model.learning_rate_decay_op)

            if should_stop:
                break

            print("Epoch %d started..." % ep_new)
            sess.run(model.samples_seen_reset_op)

        # when we ran the right number of epochs or we reached early stop we finish training
        print("\nTraining finished!!\n")

        if not nan_detected:
            # # Save checkpoint
            checkpoint_path = os.path.join(FLAGS.train_dir, FLAGS.model_name)
            model.saver.save(sess, checkpoint_path, global_step=model.global_step)

            avg_eval_loss, avg_ppx, total_words = run_eval(model=model, session=sess, data=valid_data,
                                                           batch_size=FLAGS.batch_size,
                                                           num_steps=FLAGS.num_valid_steps)
            print('  eval: averaged valid. loss %.8f\n' % avg_eval_loss)

            print("\n##### Test Results: #####\n")

            avg_test_loss, test_ppx, total_words = run_eval(model=model, session=sess, data=test_data,
                                                            batch_size=FLAGS.batch_size,
                                                            num_steps=FLAGS.num_valid_steps, valid=False)
            print('  eval: averaged test loss %.8f\n' % avg_test_loss)

            sys.stdout.flush()
コード例 #8
0
    val_summary_writer = tf.summary.FileWriter(SUMMARIESDIR + '/val')
else:
    train_summary_writer = None
    val_summary_writer = None

best_val_score = np.inf
best_val_loss = np.inf
best_epoch = 0
wait = 0

print('Training...')

for epoch in range(NB_EPOCH):

    batch_iter = 0
    data_iter = data_iterator([train_u_indices, train_v_indices, train_labels],
                              batch_size=BATCHSIZE)

    try:
        while True:
            t = time.time()

            train_u_indices_batch, train_v_indices_batch, train_labels_batch = data_iter.next(
            )

            # Collect all user and item nodes for train set
            train_u = list(set(train_u_indices_batch))
            train_v = list(set(train_v_indices_batch))
            train_u_dict = {n: i for i, n in enumerate(train_u)}
            train_v_dict = {n: i for i, n in enumerate(train_v)}

            train_u_indices_batch = np.array(