def prepare_data(dataset, prog_args, train=False, pre_process=None): ''' preprocess TU dataset according to DiffPool's paper setting and load dataset into dataloader ''' if train: shuffle = True else: shuffle = False if pre_process: pre_process(dataset, prog_args) # dataset.set_fold(fold) return dgl.dataloading.GraphDataLoader(dataset, batch_size=prog_args.batch_size, shuffle=shuffle, num_workers=prog_args.n_worker)
def prepare_data(dataset, prog_args, train=False, pre_process=None): ''' preprocess TU dataset according to DiffPool's paper setting and load dataset into dataloader ''' if train: shuffle = True else: shuffle = False if pre_process: pre_process(dataset, prog_args) # dataset.set_fold(fold) return torch.utils.data.DataLoader(dataset, batch_size=prog_args.batch_size, shuffle=shuffle, collate_fn=collate_fn, drop_last=True, num_workers=prog_args.n_worker)
rv_time_def = 'utc->utc' ################################################ # ---------- DATA PRE-PROCESSING ------------- # # First, get the transit and RV data: t_tr,f,f_err,transit_instruments,t_rv,rv,rv_err,rv_instruments = general_utils.read_data(target,mode,transit_time_def,rv_time_def) # Initialize the parameters: parameters = general_utils.read_priors(target,transit_instruments,rv_instruments,mode) # Pre-process the transit data if available: if mode != 'rvs': t_tr,phases,f, f_err = data_utils.pre_process(t_tr,f,f_err,phot_detrend,\ phot_get_outliers,n_ommit,\ window,parameters,ld_law, mode) if resampling: # Define indexes between which data will be resampled: idx_resampling = np.where((phases>-phase_max)&(phases<phase_max))[0] else: idx_resampling = [] # Create results folder if not already created: if not os.path.exists('results'): os.mkdir('results') # If chains not ran, run the MCMC and save results: if not os.path.exists('results/'+target+'_'+mode+'_'+phot_noise_model+'_'+ld_law): data_utils.exonailer_mcmc_fit(t_tr, f, f_err, transit_instruments, t_rv, rv, rv_err, rv_instruments,\ parameters, ld_law, mode, rv_jitter = rv_jitter, \
################################################ # ---------- DATA PRE-PROCESSING ------------- # # First, get the transit and RV data: t_tr, f, f_err, transit_instruments, t_rv, rv, rv_err, rv_instruments = general_utils.read_data( target, mode, transit_time_def, rv_time_def) # Initialize the parameters: parameters = general_utils.read_priors(target, transit_instruments, rv_instruments, mode) # Pre-process the transit data if available: if mode != 'rvs': t_tr,phases,f, f_err = data_utils.pre_process(t_tr,f,f_err,phot_detrend,\ phot_get_outliers,n_ommit,\ window,parameters,ld_law, mode) if resampling: # Define indexes between which data will be resampled: idx_resampling = np.where((phases > -phase_max) & (phases < phase_max))[0] else: idx_resampling = [] # Create results folder if not already created: if not os.path.exists('results'): os.mkdir('results') # If chains not ran, run the MCMC and save results: if not os.path.exists('results/' + target + '_' + mode + '_' + phot_noise_model + '_' + ld_law):
################################################ # ---------- DATA PRE-PROCESSING ------------- # # First, get the transit and RV data: t_tr, f, f_err, transit_instruments, t_rv, rv, rv_err, rv_instruments = general_utils.read_data( options) # Sort transit data if there is any: # Initialize the parameters: parameters = general_utils.read_priors(options['TARGET'], options['MODE']) # Pre-process the transit data if available: if options['MODE'] != 'rvs': t_tr, phases, f, f_err, transit_instruments = data_utils.pre_process( t_tr, f, f_err, options, transit_instruments, parameters) idx = np.argsort(t_tr) t_tr = t_tr[idx] f = f[idx] f_err = f_err[idx] phases = phases[idx] transit_instruments = transit_instruments[idx] idx_resampling = {} for instrument in options['photometry'].keys(): idx = np.where(transit_instruments == instrument)[0] if options['photometry'][instrument]['RESAMPLING']: # Define indexes between which data will be resampled: idx_resampling[instrument] = np.where((phases[idx]>-options['photometry'][instrument]['PHASE_MAX_RESAMPLING'])&\ (phases[idx]<options['photometry'][instrument]['PHASE_MAX_RESAMPLING']))[0] else: idx_resampling[instrument] = []