コード例 #1
0
def process_frame(params):
    image0_path, image1_path, image2_path, \
        sparse_depth_path, semi_dense_depth_path = params

    # Read images and concatenate together
    image0 = cv2.imread(image0_path)
    image1 = cv2.imread(image1_path)
    image2 = cv2.imread(image2_path)
    image = np.concatenate([image1, image0, image2], axis=1)

    sz, vm = data_utils.load_depth_with_validity_map(sparse_depth_path)
    iz = data_utils.interpolate_depth(sz, vm)

    # Create validity map and image output path
    interp_depth_output_path = sparse_depth_path \
        .replace(KITTI_DEPTH_COMPLETION_DIRPATH, KITTI_DEPTH_COMPLETION_OUTPUT_DIRPATH) \
        .replace('sparse_depth', 'interp_depth')
    validity_map_output_path = sparse_depth_path \
        .replace(KITTI_DEPTH_COMPLETION_DIRPATH, KITTI_DEPTH_COMPLETION_OUTPUT_DIRPATH) \
        .replace('sparse_depth', 'validity_map')
    image_output_path = validity_map_output_path \
        .replace(os.path.join(os.sep+'proj_depth', 'velodyne_raw'), '') \
        .replace('validity_map', 'image')

    # Create output directories
    for output_path in [
            image_output_path, interp_depth_output_path,
            validity_map_output_path
    ]:
        output_dirpath = os.path.dirname(output_path)
        if not os.path.exists(output_dirpath):
            try:
                os.makedirs(output_dirpath)
            except FileExistsError:
                pass

    # Write to disk
    data_utils.save_depth(iz, interp_depth_output_path)
    data_utils.save_validity_map(vm, validity_map_output_path)
    cv2.imwrite(image_output_path, image)

    return (image_output_path, sparse_depth_path, interp_depth_output_path,
            validity_map_output_path, semi_dense_depth_path)
def process_frame(args):
    image_path1, image_path0, image_path2, \
        sparse_depth_path, validity_map_path, ground_truth_path = args

    # Create image composite of triplets
    im1 = cv2.imread(image_path1)
    im0 = cv2.imread(image_path0)
    im2 = cv2.imread(image_path2)
    imc = np.concatenate([im1, im0, im2], axis=1)

    # Create interpolated depth
    sz, vm = data_utils.load_depth_with_validity_map(sparse_depth_path)
    iz = data_utils.interpolate_depth(sz, vm)

    image_ref_path = os.path.join(*image_path0.split(os.sep)[2:])
    sparse_depth_ref_path = os.path.join(*sparse_depth_path.split(os.sep)[2:])
    # Set output paths
    image_output_path = os.path.join(VOID_OUT_DIRPATH, image_ref_path)
    sparse_depth_output_path = sparse_depth_path
    interp_depth_output_path = os.path.join(VOID_OUT_DIRPATH, sparse_depth_ref_path) \
        .replace('sparse_depth', 'interp_depth')
    validity_map_output_path = validity_map_path
    ground_truth_output_path = ground_truth_path

    # Verify that all filenames match
    image_out_dirpath, image_filename = os.path.split(image_output_path)
    sparse_depth_filename = os.path.basename(sparse_depth_output_path)
    validity_map_filename = os.path.basename(validity_map_output_path)
    ground_truth_filename = os.path.basename(ground_truth_output_path)
    assert (image_filename == sparse_depth_filename)
    assert (image_filename == validity_map_filename)
    assert (image_filename == ground_truth_filename)

    # Write to disk
    cv2.imwrite(image_output_path, imc)
    data_utils.save_depth(iz, interp_depth_output_path)

    return (image_ref_path, image_output_path, sparse_depth_output_path,
            interp_depth_output_path, validity_map_output_path,
            ground_truth_output_path)
def process_frame(args):
  sparse_depth_path, validity_map_path = args

  # Create interpolated depth
  sz, vm = data_utils.load_depth_with_validity_map(sparse_depth_path)
  iz = data_utils.interpolate_depth(sz, vm)

  sparse_depth_ref_path = os.path.join(*sparse_depth_path.split(os.sep)[5:])
  
  # Set output paths
  sparse_depth_output_path = sparse_depth_path
  interp_depth_output_path = os.path.join(VOID_OUT_DIRPATH, sparse_depth_ref_path) \
      .replace('sparse_depth', 'interp_depth')
  validity_map_output_path = validity_map_path

  sparse_depth_filename = os.path.basename(sparse_depth_output_path)
  validity_map_filename = os.path.basename(validity_map_output_path)

  # Write to disk
  data_utils.save_depth(iz, interp_depth_output_path)

  return (sparse_depth_ref_path, sparse_depth_output_path, interp_depth_output_path, validity_map_output_path)
def process_frame(inputs):
    '''
    Processes a single frame

    Args:
        inputs : tuple
            image path, ground truth path
    Returns:
        str : output sparse depth path
        str : output validity map path
        str : output semi-dense depth (convex hull of sparse points) path
        str : output ground truth path
    '''

    image_path, ground_truth_path = inputs

    # Load image (for corner detection) to generate validity map
    image = cv2.resize(cv2.imread(image_path), (args.n_width, args.n_height))
    image = np.float32(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY))

    if args.sparse_depth_distro_type == 'corner':
        # Run Harris corner detector
        corners = cv2.cornerHarris(image, blockSize=5, ksize=3, k=0.04)

        # Extract specified corner locations:
        corners = corners.ravel()
        corner_locs = np.argsort(corners)[0:N_INIT_CORNER]
        corner_map = np.zeros_like(corners)
        corner_map[corner_locs] = 1

        corner_locs = np.unravel_index(corner_locs,
                                       (image.shape[0], image.shape[1]))
        corner_locs = np.transpose(np.array([corner_locs[0], corner_locs[1]]))

        kmeans = MiniBatchKMeans(n_clusters=args.n_points,
                                 max_iter=2,
                                 n_init=1,
                                 init_size=None,
                                 random_state=RANDOM_SEED,
                                 reassignment_ratio=1e-11)
        kmeans.fit(corner_locs)

        # k-Means means as corners
        corner_locs = kmeans.cluster_centers_.astype(np.uint16)
        validity_map = np.zeros_like(image).astype(np.int16)
        validity_map[corner_locs[:, 0], corner_locs[:, 1]] = 1

    elif args.sparse_depth_distro_type == 'uniform':
        indices = \
            np.array([[h, w] for h in range(args.n_height) for w in range(args.n_width)])

        selected_indices = \
            np.random.permutation(range(args.n_height * args.n_width))[0:args.n_points]
        selected_indices = indices[selected_indices]

        validity_map = np.zeros_like(image).astype(np.int16)
        validity_map[selected_indices[:, 0], selected_indices[:, 1]] = 1.0

    ground_truth = data_utils.load_depth(ground_truth_path, multiplier=448)

    ground_truth = cv2.resize(ground_truth, (args.n_width, args.n_height),
                              interpolation=cv2.INTER_NEAREST)

    sparse_depth = validity_map * ground_truth
    semi_dense_depth = ground_truth * np.where(
        skmorph.convex_hull_image(validity_map), 1, 0)

    # Shape check
    error_flag = False

    if np.squeeze(sparse_depth).shape != (args.n_height, args.n_width):
        error_flag = True
        print(
            'FAILED: sparse depth height and width do not match specified values'
        )

    if np.squeeze(semi_dense_depth).shape != (args.n_height, args.n_width):
        error_flag = True
        print(
            'FAILED: semi dense depth height and width do not match specified values'
        )

    # Validity map check
    if not np.array_equal(np.unique(validity_map), np.array([0, 1])):
        error_flag = True
        print('FAILED: validity map contains values ({}) other than 0 or 1'.
              format(np.unique(validity_map)))

    if np.sum(validity_map) < args.min_points:
        error_flag = True
        print(
            'FAILED: validity map contains fewer ({}) points than miniumum point threshold'
            .format(np.sum(validity_map)))

    # Depth value check
    if np.min(ground_truth) < 0.0 or np.max(ground_truth) > 256.0:
        error_flag = True
        print('FAILED: min ground truth value less than 0 or greater than 256')

    if np.sum(np.where(sparse_depth > 0.0, 1.0, 0.0)) < args.min_points:
        error_flag = True
        print(
            'FAILED: valid sparse depth is less than minimum point threshold',
            np.sum(np.where(sparse_depth > 0.0, 1.0, 0.0)))

    if np.sum(np.where(semi_dense_depth > 0.0, 1.0, 0.0)) < args.min_points:
        error_flag = True
        print(
            'FAILED: valid semi dense depth is less than minimum point threshold',
            np.sum(np.where(semi_dense_depth > 0.0, 1.0, 0.0)))

    if np.sum(np.where(ground_truth > 0.0, 1.0, 0.0)) < args.min_points:
        error_flag = True
        print(
            'FAILED: valid ground truth is less than minimum point threshold',
            np.sum(np.where(ground_truth > 0.0, 1.0, 0.0)))

    # NaN check
    if np.any(np.isnan(sparse_depth)):
        error_flag = True
        print('FAILED: found NaN in sparse depth')

    if np.any(np.isnan(semi_dense_depth)):
        error_flag = True
        print('FAILED: found NaN in semi dense depth')

    if np.any(np.isnan(ground_truth)):
        error_flag = True
        print('FAILED: found NaN in sparse depth or semi dense depth')

    if not error_flag:
        # Generate paths
        derived_ground_truth_path = ground_truth_path \
            .replace(SCENENET_ROOT_DIRPATH, SCENENET_OUT_DIRPATH) \
            .replace('depth', 'ground_truth')
        derived_sparse_depth_path = ground_truth_path \
            .replace(SCENENET_ROOT_DIRPATH, SCENENET_OUT_DIRPATH) \
            .replace('depth', 'sparse_depth')
        derived_validity_map_path = ground_truth_path \
            .replace(SCENENET_ROOT_DIRPATH, SCENENET_OUT_DIRPATH) \
            .replace('depth', 'validity_map')
        derived_semi_dense_depth_path = ground_truth_path \
            .replace(SCENENET_ROOT_DIRPATH, SCENENET_OUT_DIRPATH) \
            .replace('depth', 'semi_dense_depth')

        # Write to file
        data_utils.save_validity_map(validity_map, derived_validity_map_path)
        data_utils.save_depth(sparse_depth, derived_sparse_depth_path)
        data_utils.save_depth(semi_dense_depth, derived_semi_dense_depth_path)
        data_utils.save_depth(ground_truth, derived_ground_truth_path)
    else:
        print('Found error in {}'.format(ground_truth_path))
        derived_ground_truth_path = 'error'
        derived_sparse_depth_path = 'error'
        derived_validity_map_path = 'error'
        derived_semi_dense_depth_path = 'error'

    return (derived_sparse_depth_path, derived_validity_map_path,
            derived_semi_dense_depth_path, derived_ground_truth_path)
コード例 #5
0
    log(
        'Total time: {:.2f} min  Average time per sample: {:.2f} ms'.format(
            time_elapse / 60.0, time_elapse_per_sample * 1000.0), log_path)

    if ground_truth_available:
        # Run evaluation metrics
        eval_utils.evaluate(output_depths,
                            ground_truths,
                            log_path=log_path,
                            min_evaluate_depth=args.min_evaluate_depth,
                            max_evaluate_depth=args.max_evaluate_depth)

    # Store output depth as images
    if args.save_outputs:
        output_dirpath = os.path.join(args.output_path, 'saved')
        print('Storing output depth as PNG into {}'.format(output_dirpath))

        if not os.path.exists(output_dirpath):
            os.makedirs(output_dirpath)

        for idx in range(n_sample):
            output_depth = np.squeeze(output_depths[idx, ...])

            if args.keep_input_filenames:
                filename = os.path.basename(sparse_depth_paths[idx])
            else:
                filename = '{:010d}.png'.format(idx)

            output_path = os.path.join(output_dirpath, filename)
            data_utils.save_depth(output_depth, output_path)
def process_frame(inputs):
    '''
    Processes a single depth frame

    Args:
        inputs : tuple
            KITTI sparse depth path,
            Virtual KITTI ground truth path,
            output directory paths in order of:
                sparse depth, validity map, semi-dense depth, dense depth, groundtruth
    Returns:
        str : Virtual KITTI output sparse depth path
        str : Virtual KITTI output validity map path
        str : Virtual KITTI output semi-dense depth (convex hull of sparse points) path
        str : Virtual KITTI output dense depth path (ground truth without sky)
        str : Virtual KITTI output ground truth path
    '''

    # Separate arguments into individual variables
    kitti_sparse_depth_path, vkitti_ground_truth_path, output_dirpaths = inputs

    # Extract validity map from KITTI sparse depth
    _, kitti_validity_map = data_utils.load_depth_with_validity_map(kitti_sparse_depth_path)

    # Load Virtual KITTI ground truth
    vkitti_ground_truth = \
        cv2.imread(vkitti_ground_truth_path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)

    # Convert Virtual KITTI ground truth to meters
    vkitti_ground_truth = vkitti_ground_truth / 100.0

    if kitti_validity_map.shape != vkitti_ground_truth.shape:
        # Resize KITTI validity map to VKITTI size
        kitti_validity_map = cv2.resize(
            kitti_validity_map,
            dsize=(vkitti_ground_truth.shape[1], vkitti_ground_truth.shape[0]),
            interpolation=cv2.INTER_NEAREST)

        assert(np.all(np.unique(kitti_validity_map) == [0, 1]))

    # Get Virtual KITTI dense depth without sky
    vkitti_validity_map = np.ones(vkitti_ground_truth.shape)
    vkitti_validity_map[vkitti_ground_truth > 600.0] = 0.0
    vkitti_dense_depth = vkitti_validity_map * vkitti_ground_truth

    # Get Virtual KITTI sparse depth
    vkitti_sparse_depth = kitti_validity_map * vkitti_dense_depth

    # Get Virtual KITTI semi-dense depth (convex hull of sparse points)
    vkitti_semi_dense_depth = \
        np.where(skmorph.convex_hull_image(kitti_validity_map), 1, 0) * vkitti_dense_depth

    # Create output filepaths
    filename = os.path.basename(vkitti_ground_truth_path)

    output_sparse_depth_dirpath, \
        output_validity_map_dirpath, \
        output_semi_dense_depth_dirpath, \
        output_dense_depth_dirpath, \
        output_ground_truth_dirpath = output_dirpaths

    output_sparse_depth_path = os.path.join(output_sparse_depth_dirpath, filename)
    output_validity_map_path = os.path.join(output_validity_map_dirpath, filename)
    output_semi_dense_depth_path = os.path.join(output_semi_dense_depth_dirpath, filename)
    output_dense_depth_path = os.path.join(output_dense_depth_dirpath, filename)
    output_ground_truth_path = os.path.join(output_ground_truth_dirpath, filename)

    # Write to disk
    data_utils.save_depth(vkitti_sparse_depth, output_sparse_depth_path)
    data_utils.save_validity_map(kitti_validity_map, output_validity_map_path)
    data_utils.save_depth(vkitti_semi_dense_depth, output_semi_dense_depth_path)
    data_utils.save_depth(vkitti_dense_depth, output_dense_depth_path)
    data_utils.save_depth(vkitti_ground_truth, output_ground_truth_path)

    return (output_sparse_depth_path,
            output_validity_map_path,
            output_semi_dense_depth_path,
            output_dense_depth_path,
            output_ground_truth_path)
コード例 #7
0
                    .replace('sparse_depth', 'interp_depth')
                validity_map_output_path = path \
                    .replace('kitti_depth_completion', 'kitti_depth_completion_voiced') \
                    .replace('sparse_depth', 'validity_map')
                sparse_depth_output_paths.append(path)
                interp_depth_output_paths.append(interp_depth_output_path)
                validity_map_output_paths.append(validity_map_output_path)

                for output_path in [
                        interp_depth_output_path, validity_map_output_path
                ]:
                    output_dirpath = os.path.dirname(output_path)
                    if not os.path.exists(output_dirpath):
                        os.makedirs(output_dirpath)
                # Write to disk
                data_utils.save_depth(iz, interp_depth_output_path)
                data_utils.save_validity_map(vm, validity_map_output_path)

            elif refdir == 'ground_truth':
                semi_dense_depth_output_paths.append(path)

            sys.stdout.write('Processed {}/{} {} {} samples \r'.format(
                idx + 1, len(filepaths), mode_type, refdir))
            sys.stdout.flush()

        print('Completed generating {} {} {} samples'.format(
            len(filepaths), mode_type, refdir))

print('Storing validation image file paths into: %s' %
      VAL_IMAGE_OUTPUT_FILEPATH)
with open(VAL_IMAGE_OUTPUT_FILEPATH, "w") as o: