コード例 #1
0
    def get_data(self, index, return_raw_cloud=False):
        color = np.array(Image.open(self.colorpath[index]), dtype=np.float32) / 255.0
        depth = np.array(Image.open(self.depthpath[index]))
        seg = np.array(Image.open(self.labelpath[index]))
        meta = scio.loadmat(self.metapath[index])
        scene = self.scenename[index]
        try:
            intrinsic = meta['intrinsic_matrix']
            factor_depth = meta['factor_depth']
        except Exception as e:
            print(repr(e))
            print(scene)
        camera = CameraInfo(1280.0, 720.0, intrinsic[0][0], intrinsic[1][1], intrinsic[0][2], intrinsic[1][2], factor_depth)

        # generate cloud
        cloud = create_point_cloud_from_depth_image(depth, camera, organized=True)

        # get valid points
        depth_mask = (depth > 0)
        seg_mask = (seg > 0)
        if self.remove_outlier:
            camera_poses = np.load(os.path.join(self.root, 'scenes', scene, self.camera, 'camera_poses.npy'))
            align_mat = np.load(os.path.join(self.root, 'scenes', scene, self.camera, 'cam0_wrt_table.npy'))
            trans = np.dot(align_mat, camera_poses[self.frameid[index]])
            workspace_mask = get_workspace_mask(cloud, seg, trans=trans, organized=True, outlier=0.02)
            mask = (depth_mask & workspace_mask)
        else:
            mask = depth_mask
        cloud_masked = cloud[mask]
        color_masked = color[mask]
        seg_masked = seg[mask]
        if return_raw_cloud:
            return cloud_masked, color_masked

        # sample points
        if len(cloud_masked) >= self.num_points:
            idxs = np.random.choice(len(cloud_masked), self.num_points, replace=False)
        else:
            idxs1 = np.arange(len(cloud_masked))
            idxs2 = np.random.choice(len(cloud_masked), self.num_points-len(cloud_masked), replace=True)
            idxs = np.concatenate([idxs1, idxs2], axis=0)
        cloud_sampled = cloud_masked[idxs]
        color_sampled = color_masked[idxs]
        
        ret_dict = {}
        ret_dict['point_clouds'] = cloud_sampled.astype(np.float32)
        ret_dict['cloud_colors'] = color_sampled.astype(np.float32)

        return ret_dict
コード例 #2
0
def get_and_process_data(data_dir):
    # load data
    color = np.array(Image.open(os.path.join(data_dir, 'color.png')),
                     dtype=np.float32) / 255.0
    depth = np.array(Image.open(os.path.join(data_dir, 'depth.png')))
    workspace_mask = np.array(
        Image.open(os.path.join(data_dir, 'workspace_mask.png')))
    meta = scio.loadmat(os.path.join(data_dir, 'meta.mat'))
    intrinsic = meta['intrinsic_matrix']
    factor_depth = meta['factor_depth']

    # generate cloud
    camera = CameraInfo(1280.0, 720.0, intrinsic[0][0], intrinsic[1][1],
                        intrinsic[0][2], intrinsic[1][2], factor_depth)
    cloud = create_point_cloud_from_depth_image(depth, camera, organized=True)

    # get valid points
    mask = (workspace_mask & (depth > 0))
    cloud_masked = cloud[mask]
    color_masked = color[mask]

    # sample points
    if len(cloud_masked) >= cfgs.num_point:
        idxs = np.random.choice(len(cloud_masked),
                                cfgs.num_point,
                                replace=False)
    else:
        idxs1 = np.arange(len(cloud_masked))
        idxs2 = np.random.choice(len(cloud_masked),
                                 cfgs.num_point - len(cloud_masked),
                                 replace=True)
        idxs = np.concatenate([idxs1, idxs2], axis=0)
    cloud_sampled = cloud_masked[idxs]
    color_sampled = color_masked[idxs]

    # convert data
    cloud = o3d.geometry.PointCloud()
    cloud.points = o3d.utility.Vector3dVector(cloud_masked.astype(np.float32))
    cloud.colors = o3d.utility.Vector3dVector(color_masked.astype(np.float32))
    end_points = dict()
    cloud_sampled = torch.from_numpy(cloud_sampled[np.newaxis].astype(
        np.float32))
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    cloud_sampled = cloud_sampled.to(device)
    end_points['point_clouds'] = cloud_sampled
    end_points['cloud_colors'] = color_sampled

    return end_points, cloud
コード例 #3
0
    def _get_one_annid_data(self, scene_index, view_index,return_raw_cloud=False):
        # import ipdb; ipdb.set_trace()
        ret_dict = dict(
            scene_indexs=self.real_ids[scene_index],
            annid_offset=self.annoffset[scene_index][view_index],
        )
        data_path = self.pointpath[scene_index][view_index]
        if os.path.exists(data_path):
            ret_dict['point_clouds'] = np.load(data_path)
            return ret_dict

        # color = np.array(Image.open(self.colorpath[scene_index][view_index]), dtype=np.float32) / 255.0
        depth = np.array(Image.open(self.depthpath[scene_index][view_index]))
        seg = np.array(Image.open(self.labelpath[scene_index][view_index]))
        meta = scio.loadmat(self.metapath[scene_index][view_index])
        scene = self.scenename[scene_index][view_index]
        try:
            intrinsic = meta['intrinsic_matrix']
            factor_depth = meta['factor_depth']
        except Exception as e:
            print(repr(e))
            print(scene)
        camera = CameraInfo(1280.0, 720.0, intrinsic[0][0], intrinsic[1][1], intrinsic[0][2], intrinsic[1][2], factor_depth)

        # generate cloud
        cloud = create_point_cloud_from_depth_image(depth, camera, organized=True)

        # get valid points
        depth_mask = (depth > 0)
        seg_mask = (seg > 0)
        if self.remove_outlier:
            camera_poses = np.load(os.path.join(self.root, 'scenes', scene, self.camera, 'camera_poses.npy'))
            align_mat = np.load(os.path.join(self.root, 'scenes', scene, self.camera, 'cam0_wrt_table.npy'))
            trans = np.dot(align_mat, camera_poses[self.frameid[scene_index][view_index]])
            workspace_mask = get_workspace_mask(cloud, seg, trans=trans, organized=True, outlier=0.02)
            mask = (depth_mask & workspace_mask)
        else:
            mask = depth_mask
        cloud_masked = cloud[mask]
        # color_masked = color[mask]
        seg_masked = seg[mask]
        if return_raw_cloud:
            return cloud_masked  #, color_masked

        # sample points
        if len(cloud_masked) >= self.num_points:
            idxs = np.random.choice(len(cloud_masked), self.num_points, replace=False)
        else:
            idxs1 = np.arange(len(cloud_masked))
            idxs2 = np.random.choice(len(cloud_masked), self.num_points-len(cloud_masked), replace=True)
            idxs = np.concatenate([idxs1, idxs2], axis=0)
        cloud_sampled = cloud_masked[idxs].astype(np.float32)
        # color_sampled = color_masked[idxs]

        data_dir = os.path.split(data_path)[0]
        if not os.path.exists(data_dir):
            os.mkdir(data_dir)
        # import ipdb; ipdb.set_trace()
        np.save(data_path, cloud_sampled)
        ret_dict['point_clouds'] = cloud_sampled
        # ret_dict = dict(
        #     scene_indexs=self.real_ids[scene_index],
        #     annid_offset=self.annoffset[scene_index][view_index],
        #     point_clouds=cloud_sampled.astype(np.float32),
        # )
        return ret_dict
コード例 #4
0
    def get_data_label(self, index):
        color = np.array(Image.open(self.colorpath[index]),
                         dtype=np.float32) / 255.0
        depth = np.array(Image.open(self.depthpath[index]))
        seg = np.array(Image.open(self.labelpath[index]))
        meta = scio.loadmat(self.metapath[index])
        scene = self.scenename[index]
        try:
            obj_idxs = meta['cls_indexes'].flatten().astype(np.int32)
            poses = meta['poses']
            intrinsic = meta['intrinsic_matrix']
            factor_depth = meta['factor_depth']
        except Exception as e:
            print(repr(e))
            print(scene)
        camera = CameraInfo(1280.0, 720.0, intrinsic[0][0], intrinsic[1][1],
                            intrinsic[0][2], intrinsic[1][2], factor_depth)

        # generate cloud
        cloud = create_point_cloud_from_depth_image(depth,
                                                    camera,
                                                    organized=True)

        # get valid points
        depth_mask = (depth > 0)
        seg_mask = (seg > 0)
        if self.remove_outlier:
            camera_poses = np.load(
                os.path.join(self.root, 'scenes', scene, self.camera,
                             'camera_poses.npy'))
            align_mat = np.load(
                os.path.join(self.root, 'scenes', scene, self.camera,
                             'cam0_wrt_table.npy'))
            trans = np.dot(align_mat, camera_poses[self.frameid[index]])
            workspace_mask = get_workspace_mask(cloud,
                                                seg,
                                                trans=trans,
                                                organized=True,
                                                outlier=0.02)
            mask = (depth_mask & workspace_mask)
        else:
            mask = depth_mask
        cloud_masked = cloud[mask]
        color_masked = color[mask]
        seg_masked = seg[mask]

        # sample points
        if len(cloud_masked) >= self.num_points:
            idxs = np.random.choice(len(cloud_masked),
                                    self.num_points,
                                    replace=False)
        else:
            idxs1 = np.arange(len(cloud_masked))
            idxs2 = np.random.choice(len(cloud_masked),
                                     self.num_points - len(cloud_masked),
                                     replace=True)
            idxs = np.concatenate([idxs1, idxs2], axis=0)
        cloud_sampled = cloud_masked[idxs]
        color_sampled = color_masked[idxs]
        seg_sampled = seg_masked[idxs]
        objectness_label = seg_sampled.copy()
        objectness_label[objectness_label > 1] = 1

        object_poses_list = []
        grasp_points_list = []
        grasp_offsets_list = []
        grasp_scores_list = []
        grasp_tolerance_list = []
        for i, obj_idx in enumerate(obj_idxs):
            if obj_idx not in self.valid_obj_idxs:
                continue
            if (seg_sampled == obj_idx).sum() < 50:
                continue
            object_poses_list.append(poses[:, :, i])
            points, offsets, scores, tolerance = self.grasp_labels[obj_idx]
            collision = self.collision_labels[scene][i]  #(Np, V, A, D)

            # remove invisible grasp points
            if self.remove_invisible:
                visible_mask = remove_invisible_grasp_points(
                    cloud_sampled[seg_sampled == obj_idx],
                    points,
                    poses[:, :, i],
                    th=0.01)
                points = points[visible_mask]
                offsets = offsets[visible_mask]
                scores = scores[visible_mask]
                tolerance = tolerance[visible_mask]
                collision = collision[visible_mask]

            idxs = np.random.choice(len(points),
                                    min(max(int(len(points) / 4), 300),
                                        len(points)),
                                    replace=False)
            grasp_points_list.append(points[idxs])
            grasp_offsets_list.append(offsets[idxs])
            collision = collision[idxs].copy()
            scores = scores[idxs].copy()
            scores[collision] = 0
            grasp_scores_list.append(scores)
            tolerance = tolerance[idxs].copy()
            tolerance[collision] = 0
            grasp_tolerance_list.append(tolerance)

        if self.augment:
            cloud_sampled, object_poses_list = self.augment_data(
                cloud_sampled, object_poses_list)

        ret_dict = {}
        ret_dict['point_clouds'] = cloud_sampled.astype(np.float32)
        ret_dict['cloud_colors'] = color_sampled.astype(np.float32)
        ret_dict['objectness_label'] = objectness_label.astype(np.int64)
        ret_dict['object_poses_list'] = object_poses_list
        ret_dict['grasp_points_list'] = grasp_points_list
        ret_dict['grasp_offsets_list'] = grasp_offsets_list
        ret_dict['grasp_labels_list'] = grasp_scores_list
        ret_dict['grasp_tolerance_list'] = grasp_tolerance_list

        return ret_dict